Preliminaries

(1) Throughout the book we assume ZFC. We use "virtual classes", writing
{z|p(z)} for the class of = such that p(z). We also write:

{t(x1,...,zn)|@(x1,...,2n)}, (where e.g.
tzxy, ... xn) ={ylY(y, z1,...,20)})

for:
{y| \/xl, oty =tz .., x0) ANe(x1, ..o, Tp)) )
We also write

P(A) ={z|z C A}, AUB ={z|z€ AV z € B}
ANB={zlz€ ANze€ B},-A={z| ¢ A}

(2) Our notation for ordered n—tuples is (x1,...,x,). This can be defined
in many ways and we don’t specify a definition.

(3) An n-ary relation is a class of n—tuples. The following operations are
defined for all classes, but are mainly relevant for binary relations:

dom(R) =: {z[ V y(y,z) € R}

mg(R) =: {y| V z(y,z) € R}
RoP={{y,z)|V2|{y,2z) € RA(z,z) € P}
RI1A={{y,x)|(y,z) e RNz € A}

R = {(y,z)|(z,y) € R}

We write R(z1,...,x,) for (z1,...,2,) € R.

(4) A function is identified with its extension or field — i.e. an n-ary
function is an n + l-ary relation F' such that

Nzi.cxn Nz Nw((F(z, 21, ..., 20) A F(w, 21, ..., 2,)) —
—z=w)

F(x1,...,x,) then denotes the value of F' at xy,...,x,.
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(5)

"Functional abstraction" (ty, . z.|¢(x1,...,2,)) denotes the function
which is defined and takes value t;, .. whenever ¢(z1,...,z,) and
tey,...xn 18 @ st

n

(tor, . anle(@1,. .. 2p)) =
{y, 1, ..., xn)|y =tay,. a0 Ne(x1, ..., 20)},

where e.g. tg, 2, = {2|¥(z,21,...,20)}.

Ordinal numbers are defined in the usual way, each ordinal being identi-
fied with the set of its predecessors: a = {v|v < a}. The natural num-
bers are then the finite ordinals: 0 = 0,1 = {0},...,n ={0,...,n—1}.

A note on ordered n—tuples. A frequently used definition of ordered
pairs is:

(z,y) = {{a}, {z, y}}-

One can then define n—tuples by:

() =1z, (x1,29,...,20) =: (x1,{(T1, ..., 2n)).

However, this has the disadvantage that every n 4+ 1-tuple is also an
n—tuple. If we want each tuple to have a fixed length, we could instead
identify the n—tuples with wvecton of length n — i.e. functions with
domain n. This would be circular, of course, since we must have a
notion of ordered pair in order to define the notion of "function". Thus,
if we take this course, we must first make a "preliminary definition" of
ordered pairs — for instance:

(z,y) = {{z}, {z, y}}

and then define:

(o, ...y 2n—1) = {(20,0),..., (xp—1,n — 1)}.

If we wanted to form n—tuples of proper classes, we could instead iden-
tify (Ao, ..., Ap—1) with:

{z,d)|(i=0ANx€A)V...V(i=n—1Az€A,_1)}

Qverhead arrow notation. The symbol Z is often used to donate a
vector (x1,...,x,). It is not surprising that this usage shades into what
I'shall call the informal mode of overhead arrow notation. In this mode
Z simply stands for a string of symbols 1, ..., x,. Thus we write f(Z)
for f(x1,...,x,), which is different from f({x1,...,2,)). (In informal
mode we would write the latter as f((Z)).) Similarly, Z € A means that
each of x1,...,x, is an element of A, which is different from (%) € A.



(11)

We can, of course, combine several arrows in the same expression. For
instance we can write f(§(Z)) for f(g1(z1, ... @n), - s gm(T1, ..., Tp)).

)) or f(g(Z)) for

(@i, Zip)s e s Gm(@my s Tmp,))-

~—

Hll

Similarly we can write f(g(

The precise meaning must be taken from the context. We shall often
have recourse to such abbreviations. To avoid confusion, therefore, we
shall use overhead arrow notation only in the informal mode.

A model or structure will for us normally mean an n+1-tuple (D, Ay, ...
consisting of a domain D of individuals, followed by relations on that
domain. If ¢ is a first oder formula, we call a sequence vy, ...,v, of
distinct variables good for o iff every free variable of ¢ occurs in the se-
quence. If M is a model, ¢ a formula, vy, ..., v, a good sequence for ¢
and x1,...,x, € M, we write: M = p(v1,...,0n)[Z1,...,2y,] to mean
that ¢ becomes true in M if v; is interpreted by z; for ¢ = 1,...,n.
This is the satisfaction relation. We assume that the reader knows how
to define it. As usual, we often suppress the list of variables, writing
only M | ¢lzi,...,z,). We may sometimes indicate the variables
being used by writing e.g. ¢ = ©(v1,...,U).

€-models. M = (D, E,Ay,...,A,) is an €-model iff E is the restric-
tion of the €-relation to D?. Most of the models we consider will be
€-models. We then write (D, €, A;,...,A,) or even (D, Aq,..., Ay)
for (D, € ND?, Ay,..., A,). M is transitive iff it is an €-model and D
is transitive.

The Levy hierarchy. We often write Az € yp for Az(z € y — @),
and \/ z € yp for \/ z(x € y A ). Azriel Levy defined a hierarchy of
formulae as follows:

A formula is X (or Ilp) iff it is in the smallest class ¥ of formulae such
that every primitive formula is in ¥ and A v € ugp, \/ v € up are in X
whenever ¢ is in % and v, v are distinct variables.

(Alternatively we could introduce Av € u, \/v € u as part of the
primitive notation. We could then define a formula as being ¥ iff it
contains no unbounded quantifiers.)

The ¥,41 formulae are then the formulae of the form \/ vy, where ¢
is IT,,. The II,,41 formulae are the formulae of the form A vy when ¢
18 Y.

If M is a transitive model, we let ¥, (M) denote the set of realations
on M which are definable by a ¥,, formula. Similarly for I, (M). We
say that a relation R is X, (M)(I1,,(M)) in parameters pi, ..., pm iff

R(x1,...,20) < R(z1,..., %0, D1, -, Dm)



and R’ is X,(M)(I1,(M)). X,(M) then denotes the set of relations
which are ¥; (M) in some parameters. Similarly for II, (M).

Kleene’s equation sign. An equation 'L ~ R’ means: The left side is
defined if and only if everything on the right side is defined, in which
case the sides are equal’. This is of course not a strict definition and
must be interpreted from case to case.

F(¥) ~ G(H(Z),...,H,(Z)) obviously means that the function F is
defined at (xi,...,x,) iff each of the H; is defined at (Z) and G is
defined at (H1(Z), ..., H,(Z)), in which case equality holds.

The recursion schema of set theory says that, given a function G, ther
is a function F' with:

Fly, @) = G(y, 7, (F(2,7)|z € y)).

This says that F is defined at (y, ¥) iff Fis defined at (z,Z) for all z € y
and G is defined at (y, Z, (F(z,Z)|z € y)), in which case equality holds.

By the recursion theorem we can define:

TC(z) =2 U | JTC(2)

zex

(the transitive closure of x)
rn(z) = lub{rn(z)|z € z}

(the rank of x).



Chapter 1

Transfinite Recursion Theory

1.1 Admissibility

Some fifty years ago Kripke and Platek brought out about a wide ranging
generalization of recursion theory — which dealt with “effective” functions
and relations on w — to transfinite domains. This, in turn, gave the impetus
for the development of fine structure theory, which became a basic tool of
inner model theory. We therefore begin with a discussion of Kripke and
Platek’s work, in which w is replaced by an arbitrary “admissible” structure.

1.1.1 Introduction

Ordinary recursion theory on w can be developed in three different ways. We
can take the notion of algorithm on basic, defining a recursive function on w
to be one given by an algorithm. Since, however, we have no definition for the
general notion of algorithm, this approach involves defining a special class
of algorithms and then convincing ourselves that “Church’s thesis” holds —
i.e. that every function generated by an algorithm is, in fact, generated by
one which lies in our class. Alternatively we can take the notion of calculus
on basic, defining an n-ary relation R on w to be recursively enumerable
(r.e.) if for some calculus involving statements of the form “R(iy,...,i,)”
(41,...,in < w), R is the set of tuples (i1,...,4,) such that “R(i1,...,i,)”
is provable. R is then recursive if both it and its complement are r.e. A
function defined on w is recursive if it is recursive as a relation. But again,
since we have no general definition of calculus, this involves specifying a
special class of calculi and appealing to the appropriate form of Church’s
thesis.
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A third alternative is to base the theory on definability, taking the r.e. re-
lation as those which are definable in elementary number theory by one of
a certain class of formulae. This approach has often been applied, but char-
acterizing the class of defining formula tends to be a bit unnatural. The
situation changes radically, however, if we replace w by the set H = H,, of
heredetarily finite sets. We consider definability over the structure (H, €),
employing the familiar Levy hierarchy of set theoretic formulae:

IIy = ¥y =: formulae in which all quantifiers are bounded
Y41 =: formulae \/ zp where ¢ in II,

1,41 =: formulae A zy where ¢ in ¥,,.

We then call a relation on H r.e. (or H-r.e.) iff it is definable by a ¥;
formula. Recalling that w C H it then turns out that a relation on w is
H-r.e. iff it is r.e. in the classical sense. Moreover, there is an H-recursive
map 7 : H <> w such that A C H is H-r.e. iff 7”A is r.e. in the classical
sense.

This suggests a very natural way of relativizing recursion theory to transfinite
domains. Let N = (|N|, €, A;,..., Ay,) be any transitive structure. We first
define:

Definition 1.1.1. A relation on N is 3, (N) (in the parameters py,...,p, €
N) iff it is N-definable (in p) by a ¥, formula. It is A, (N) (in p) if both it
and its completement are ¥, (N) (in p). It is X,,(N) iff it is X, (N) in some
parameters. Similarly for A, (V).

Following our above example of N = (H, €), it is natural to define a relation
on N as being N-r.e. iff it is X;(N), and N-recursive iff it is A;(N). A
partial function F on N is N-r.e. iff it is N-r.e. as a relation. F is N—
recursive as a function iff it is N-r.e. and dom(F’) in A;(N).

(Note that X, ((H, €)) = £1((H, €)), which will not hold for arbitrary N.)

However, this will only work for an IV satisfying rather strict conditions since,
when we move to transfinite structures N, we must relativize not only the
concepts “recursive” and “r.e.”, but also the concept “finite”. In the theory of
H the finite sets were simply the elements of H.

Correspondingly we define:
u is N—finite iff u € N.

But there are certain basic properties which we expect any recursion theory
to have. In particular:
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e If A is recursive and wu is finite, then A N is finite.

e If v is finite and F : uw — N is recursive, then F"u is finite.

Those transitive structures N = (|N|,€ Aj,...,A,) which yield a satis-
factory recursion theory are called admissible. An ordinal « is then called
admissible iff L, is admissible. The admissible structures were character-
ized by Kripke and Platek as those transfinite structures which satisfy the
following axioms:

(1) 0,{x,y}, Uz are sets
(2) The Xo aziom of subsets:
xNA{z|p(u)} is a set

(where ¢ is any Yg—formula)

(3) The Xo axiom of collection:

/\:1: Eu\/y o(z,y) —>\/v/\m eu\/yevgo(a;,y),

(where ¢ is any Yg—formula).

Note Kripke-Platek set theory (KP) consists of the above axioms together
with the axoim of extensionality and the full axiom of foundation (i.e. for all
formulae, not just the ¥ ones).

Note Although the definability approach is the one most often employed in
transfinite recursion theory, the approaches via algorithms and calculi have
also been used to define the class of admissible ordinals.

1.1.2 Properties of admissible structures

We now show that admissible structures satisfy the two criteria stated above.
In the following let M = (|M|, € A,, ..., Ay) be admissible.

Lemma 1.1.1. Let w e M. Let A be A{(M). Then ANue M.

Proof: Let Az + \/ yAoyz;—Ax < \/yAiyz, where Ay, A are X,(M).

Then Az € u\ y(Aoyzr V Ajyz). Hence there is v € M such that
ANz eu\ye€v(AyzV Ayx). QED

Before verifying the second criterion we prove:
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Lemma 1.1.2. M satisfies:

/\:L"Eu\/yl...ynw(x,gj’) — \/u/\mEU\/yl...yn € up(x,y)

for Xo-formulae .

—

Proof. Assume Az € u\/ y1...ynp(z,7). Then

/\xeu\/w\/yl...yn € wo(z, 7).

Yo

Hence there is v/ € M such that Az € u\N/w € v\ y1...yn € we(x,y).
Take v = Jv'. QED (Lemma 1.1.2)

We now verify the second criterion:

Lemma 1.1.3. Letu € M,u C dom(F'), where F is a ¥,(M) funcion. Then
F'ue M.

Proof. Let y = F(x) < \ zF'zyx, where F’ is a ¥y(M) relation. Then

Nz € u\ z,yF'zyxz. Hence there is v € M such that

ANz eu\ zy € vF zyx. Hence F'u=vN{y|\Vx €u\ z € vF'zzy}.
QED (Lemma 1.1.3)

Assuming the admissibility of M, we immediately get from Lemma 1.1.2:
Lemma 1.1.4. Let o(y,Z) be a X1—formula. Then \/ yp(y, T) is uniformly
1 in M.

Note “Uniformly” is a word which recursion theorists like to use. Here it
means that M = \/ yo(y, &) <> ¥(Z) for a ¥ formula ¥ which depends only
on ¢ and not on the choice of M.

Lemma 1.1.5. Let p(y,Z) be 1. Then Ny € up(y, T) is uniformly X1 in
M.

Proof. Let o(y, %) =\/ z¢/(z,y,x), where ¢ is Xy. Then
Ny eue(y, 7 « \[v \yeu\/zecu(z,y,2)

o

in M. QED (Lemma 1.1.5)

Lemma 1.1.6. Let ©o(Z), 1(Z) be 1. Then (0o(Z)ANp1(Z)), (@o(Z)Vep1(Z))
are uniformly 31 in M.
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Proof. Let ¢;(Z) =\ yi¥i(yi, £) where without loss of generality yo # yi.
Then

(o(@) A (@) < \/ w0 \/ w1 (6o, 2) A &1 (11, 7))
Similarly for V. QED (Lemma 1.1.6)

Putting this together:

Lemma 1.1.7. Let 1, ..., o, be X1—formulae. Let W be formed from ¢1,. .., ¢on
using only conjunction, disjunction, existence quantification and bounded
uniwersal quantification. Then W(x1,...,x,) in uniformly X1 (M)

An immediate consequence of Lemma 1.1.7 is:

Lemma 1.1.8. R C M" in X1(M) in the parameter O iff it is X1(M) in no
parameter.

Proof. Let R(Z) +» R'(0,Z). Then

r) < \/Z(R'(z,:f) /\/\y € zy #v).
QED (Lemma 1.1.8)
Note R isin fact uniformly X1 (M) in the sense that its ¥; definition depends
only on the original ¥ definition of R from (), and not on M.

Lemma 1.1.9. Let R(y1,...,yn) be a relation which is X1(M) in the the
parameter p. Fori=1,... n let fi(x1,...,xm) be a partial function on M
which (as a relation) is X1(M) in p. Then the following relation is uniformly
Y1 (M) in p:

R(f1(2), ..., fa(®)) ¢ \/ w1 un( N\ wi = £:(Z) AR(®G)).
i=1
This follows by Lemma 1.1.7. (“Uniformly” again mean that the ¥; definition

depends only on the ¥ definition of R, fi,..., fn.)

Similarly:

Lemma 1.1.10. Let f(y1,...,Yn),gi(z1,...,25)(0 = 1,...,n) be partial
functions which are ¥1(M) in p, then the function h(¥) ~ f(g(Z)) is uni-
formly 31(M) in p.

Proof.

QED (Lemma 1.1.10)
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Lemma 1.1.11. Let f;(Z) be a function which is 31(M) in p(i =1,...,n).
Let Ri(Z)(i = 1,...,n) be mutually exclusive relations which are ¥1(M) in
p. Then the function

f(&) >~ fi(T) if Ri(Z)
is uniformly ¥1(M) in p.

Proof.
) A Ri(7)).

<@
1
&H
o
<<
<
1
e
=7
8

QED (Lemma 1.1.11)

Using these facts, we see that the restrictions of many standard set theoretic
functions to M are X1 (M).

Lemma 1.1.12. The following functions are uniformly 31 (M):

(a) f(x) = $,f($) = Ul‘,f(l‘,y) = ny’f(x’y) = l‘ﬂy,f(ﬂf,y) = l’\y
(set difference)

(b) f(z) = Cu(x), where Co(x) = 2, Cpy1 () = Ca(w) UU Cu(a)

(c) f(z1,...,xn) ={21,...,2n}

(d) f(z) =1 (where i < w)

() f(z1,...,xn) = (T1,...,Tn)

(f) f(z) = dom(z), f(z) = mg(z), f(z,y) = "y, f(z,y) =z ]y
fl@)=a7"

(8) flx1,...,zp) =21 X T2 X ... X Ty

(h) f(z) = (x)! where ((20,...,2n-1))F = z and (u)! = 0 in all other

x(z) if x is a function
(i) f(z,z) =z[z] = ¢ and z € dom(x)
() otherwise.

Proof. We display sample proofs. (a) is straightforward. (b) follows by
induction on n. To see (¢), y = {z1,...,z,} can be expressed by the ¥o—
statement

xl,...,xnGy/\/\zEy(z:azl\/...\/z:xn).
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(d) follows by induction on 4, since
0=0,i+1=1:U{i}

The proof of (e) depends on the precise definition of (z1,...x,). If we want
each tuple to have a unique length, then the following definition recommends
itself: First define a notion of ordered pair by: (z,y) =: {{z},{z,y}} Then
(x,y) is a ¥; function. Then iff: (xy,...,2,) =: {(21,0),..., (zp,n — 1)},
the conclusion is immediate.

For (f) we display the proof that dom(z) is a ¥; function. Note that
x,y € Cp({x,y)) for a sufficient n. But since every element of dom(x) is
a component of a pair lying in z, it follows that dom(x) C C,(z) for a
sufficient n. Hence y = dom(z) can be expressed as:

/\sz\/w(w,z> GmA/\z,w € Cp(x)((w,z) ex — 2z €y).

To see (g), note that y = x1 X ... X z,, can be expressed by:

Nz1€xi... Nzn €xp(z1,...,2n) €Y
ANNwey\zi€xr...\zn €xpw=(21,...,2n).

To see (h) note that, for sufficiently large m,y = ()} can be expressed by:

Vzo..ozn—1(x=(20,...,2n—1) Ny = 2;)
Viy=0ANzo...2n-1 € Crp(z)x # (20, -+ 2n—1))

(i) is similarly straightforward. QED (Lemma 1.1.12)

The recursion theorem of classical recursion theory says that if g(n,m) is
recursive on w and f : w — w is defined by:

f0) =k, f(n+1) = g(n, f(n)),

then f isrecursive. The point is that the value of f at any n is determined by
its values at smaller numbers. Working with H instead of w we can express
this in the elegant form:

Let g:wx H— w be ¥;.
Then f:w — wis X1, where f(n) = g(n, f [n).

If we take g : H?> — H, then f will be ¥ where f(x) = g(x, f | 2) for x € H.
We can even take g as being a partial function on H2. Then f is ¥ where:

f(x) = g(z, (f(2)|z € x)).
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(This means that f(z) is defined if and only if f(z) is defined for z € x and
g is defined at (z, f [ x), in which case the above equality holds.)

We now prove the same thing for an arbitrary admissible M. If f is a partial
X, function and x C dom(f), we know by Lemma 2.2.3 that "z € M. But
then fx € M, since f*(z) ~ (f(2), z) is a X; function with  C dom(f*),
and f*"x = f | x. The recursion theorem for admissibles M = (|M]|,€
JA1, ..., Ay) then reads:

Lemma 1.1.13. Let G(y,Z,u) be a X1(M) function in the parameter p.
Then there is exactly one function F(y,¥) such that

Fly, @) ~ G(y, 7, (F(z,7)|z € y)).

Moreover, F is uniformly ¥1(M) in p (i.e. the 31 definition depends only
on the X1 definition of G.)

Proof. We first show existence. Set:
I'z=: {f € M|f is afunction Adom(f) is
transitive A Ay € dom(f)f(y) = G(y,Z, fy)}

Set Fzg =Tz F = {(y,Z)|y € Fz. Then F is in ¥;(M) in p uniformly.

(1) F is a function.

Proof. Suppose not. Then for some & there are f,f' € T'z, y €
dom(f) Ndom(f’) such that f(y) # f'(y). Let y be €-minimal with
this property. Then f [y = f'|y. But then f(y) = G(y,Z, f [y) =
Gy, Z, f',1y) = f'(y). Contradiction! QED (1)

Hence F(y) = f(y) if y € dom(f) and f € I'z.

(2) Let (y,%) € dom(F). Then y C dom(Fz),(y,Z, (F(z @)z € y)) €
dom(G) and
F(y, %) = Gy, T, (F(z,7)|z € y)).

Proof. Let y € dom(f), f € I'z. Then

F(y,7) = f(y) =Gy,

QED (2)

(3) Let y C dom(F3), (y,Z, Fz|y) € dom(G). Then y € dom(Fy).

Proof. By our assumption: Az €y\/ f(f € TzAz € dom(f)). Hence
there is w € M such that

Nzey\ feulf €Tzzedom(f)).
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Set: f/ = J(unNTz). Then f € I'z and y C dom(f’). Moreover

f'ly=Fgly. Set " = ffU{(G(y,Z, f Ty),y)}. Then f” € 'y and
y € dom(f"), where f” C Fj. QED (3)

This proves existence. To show uniqueness, we virtually repeat the proof
of (1): Let F* satisfy the same condition. Set FZ(y) ~ F*(y,&). Suppose
F* # F. Then FX(y) # Fz(y) for some Z,y. Let y be €-minimal ect.
FX(y) # Fz(y). Then Fj |y = Fy[y. Hence

Fx(y)

Contradiction! QED (Lemma 1.1.13)

We recall that the transitive closure TC(x) of a set x is recursively definable
by: TC(z) = xU{J,c, TC(2). Similarly, the rank rn(x) of a set is definable
by rn(z) = lub{rn(z)|z € x}. Hence:

Corollary 1.1.14. T'C,rn are uniformly ¥,(M).

The successor function sa = a + 1 on the ordinals is defined by:

[ zu{z}ifz € On
U= undefined if not

which is ¥;. The function a + 3 is defined by:

a+0=a«a
a+sv=s(a+vr)
a+ A= U,.a+v for limit \.

This has the form:
r+y~Gy,z (z+2z €y)).
Similarly for the function = -y, 2¥,... etc. Hence:

Corollary 1.1.15. The ordinal functions o+ 1,0 + 3,02, ... ete. are uni-
formly X1 (M).

We note that there is an even more useful form of Lemma 1.1.13:

Lemma 1.1.16. Lel G be as in Lemma 1.1.13. Let h : M — M be ¥1(M)
inp r.t {{z,y)|x € h(y)} is well founded. There is a unique f such that

Fy) = Gy, 7, (F(z,7)|x € h(y)))-
Moreover, F is uniformly' ¥1(M) in p.

! (“uniformly” meaning, of course, that the X1 definition of F' depends only on the ¥;
definition of G, h.)
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The proof is exactly like that of Lemma 1.1.13, using minimality in the
relation {(z,y)|x € h(y)} in place of €-minimality. We now consider the
structure of “really finite” sets in an admissible M.

Lemma 1.1.17. Let u € H,. The class u and the constant function
f(x) = u are uniformly 31 (M).

Proof. By e-induction on u: Let uw = {z1,...,2,}.
n
reu+s Vr=z
i=1
n
r=us> Ayexyeun Nz €.
=1

1=

QED

x € w is clearly a g condition. But then:

Lemma 1.1.18. Let w € M. Then the constant function f(z) = w is
uniformly 31 (M).

Proof.
x:w<—>(/\zeszw/\(Z)Ex/\/\zesz{z}Ex)

(where 'z € w’ is 3) QED

Lemma 1.1.19. The class Fin and the function f(x) = P, (x) are uniformly
Y1 (M), where Fin = {zx € M|T < w},P,(z) = P(x) N Fin.

Proof.

x € Fin o \VnewV ffineox
y=Py(x) < AucyluCzAueFn)ADeyn
ANNzez{z} eyANANu,v€yulUv € y.

We must show that Py,(x) € M. If w ¢ M, then rn(x) < w for all x € M,
Hence M = H,, is closed under P,,. If w € M, there is X, (M) f defined by

F(0) = {{z}]z € 2}, f(n + 1) = {uUv[(u,v) € f(n)*}.
Then Py (z) = J fw € M. QED (Lemma 1.1.19)

But then:

Lemma 1.1.20. Ifw € M, then H,, € M and the constant function f(z) =
H,, is uniformly ¥1(M).

Proof. H, € M, since there is a X;(M) function g defined by ¢(0) =
0,9(n+1) =P,(g9(n)). Then H, = Jg"w € M and f(z) = H, is X1(M)
since g and the constant function w are X (M). QED (Lemma 1.1.20)
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1.1.3 The constructible hierarchy

We recall Godel’s definition of the constructible hierarchy (Ly|r € On):

Ly=10
Lys1 = Def(L,)
Ly = | L, for limit A,
v<A
where Def(u) is the set of all z C w which are (u, €)—definable in parameters
from wu (taking Def(0) = {0}). (Note that if u is transitive, then u C Def(u)

and Def(u) is transitive.) Godel’s constructible universe is then L =: |J L.
veOn

By fairly standard methods one can show:

Lemma 1.1.21. Let w € M. Then the function f(u) = Def(u) is uniformly
Y1 (M).

We omit the proof, which is quite lengthy. It involves “arithmetizing” the
language of first order set theory by identifying formulae with elements of w
or H,, and then showing that the relevant syntactic and semantic concepts
are M-recursive.

By the recursion theorem we can of course conclude:

Corollary 1.1.22. Let w € M. The function f(a) = Lo is uniformly
Y1 (M).

The constructible hierarchy over a set u is defined by:

Lo(u) = TC({u})
Ly+1(U) Def(Ly (u))
Ly(u) = U Ly(u) for limit A.

v<A
Oviously:

Corollary 1.1.23. Let w € M. The function f(u,c) = Lo(u) is uniformly
Y1 (M).

The constructible hierarchy relative to classes A1, ..., A, is defined by:
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where Def(U, A1,...,A,) is the set of all z C u which are
(u,€,A1 Nu,..., A, Nu)—definable in parameters from u.

Much as before we have:

Lemma 1.1.24. Let w € M. Let Aq,..., Ay, be A (M) in the parameter p.
Then the function f(u) = Def(u, A1, ..., Ay) is uniformly 31(M) in p.

Corollary 1.1.25. Let w € M. Let Ay,...,A, be as above. Then the
function f(a) = Lo[A] is uniformly X1(M) in p.

—.

(In particular, if M = (|M|, €, A1, ..., Ay). Then f(a) = Ly[A] is uniformly
X1 (M).)
(One could, of course, also define Lq(u)[A] and prove the corresponding
results.)

Any well ordering r of a set u induces a well ordering of Def(u), since each
element of Def(u) is defined over (u, €) by a tuple (p,z1,...,z,), where ¢
is a formula and z1,...,x, are elements of u which interpret free variables
of p. If u is transitive (hence u C Def(u)), we can also arrange that the well
ordering, which we shall call < (u,r), is an end extension of r. The function
< (u,r) is uniformly ;. If we then set:

<0= 0, <p41=< (Ly, <)

<= U <, for limit A,
v<A

it follows that <, is a well ordering of L, for all v. Moreover <, is an end
extension of <, for v < a.

Similarly, if A is $1(M) in p, there is a hierarchy <2 (v € On NM) such that
<2 well orders L, [A] and the function f(v) =<2 is ¥1(M) in p (uniformly
relative to the X; definition of A).

By corollary 1.1.25 we easily get:

Lemma 1.1.26. Let M = (|M|, €, A1,...,A,) be admissible. Let o =

—. —.

OnNM. Then (Ly[A], € A) is admissible.

—.

Proof: Set: Lf = (L,[A], €, A). Axiom (1) holds trivially in Lf.
To verify the ¥g—axiom of subsets, let B be ZO(Lf). Let u € Lf.

Claim un B € LA,
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Proof: Pick v < a such that u € Lf and B is ¥ in parameters from Lf.
By X—absoluteness we have:

un B € Def(LY) = LA, c LA,

QED (Claim)

We now prove ¥p—collection. Let Rxy be a X,-relation. Let u € Lf such
that Az € u\/ yRzy.

Claim \/v € Lf/\x €u\/y € vRxy.

For each x € u let g(x) be the least v < « such that x € L;Y. Then g is in
3, (M) and u C dom(g). Hence § = sup ¢"u < a and

/\x € u\/y € L(‘?ny.

QED (Lemma 1.1.26)

Definition 1.1.2. Let « be an ordinal.

o « is admissible ifl L, is admissible

- -,

o « is admissible in Ay, ..., A, Ciff Lf =: (Lo|A], € A) is admissible

—,

o f:a" — ais a-recursive (in A) iff f is EI(LQ)(El(Lf))

—,

o RCamisre (in A)iff Ris 2, (La(Z1(LY)).

(Note The theory of a-recursive functions and relations on an admissible
« has been built up without references to Ly, using a formalized notion of
a-bounded calculus (Kripke) or a-bounded algorithm (Platek).

Similarly for a—recursiveness in Ay, ..., A,, taking the A; as "oracles")

—.

A transitive structure M = (|M|,€ A) is called strongly admissible iff, in
addition to the Kripke—Platek axioms, it satisfies the 31 aziom of subsets:

zN{z|p(z)} is a set (for Xy formulae ¢).

Kripke defines the projectum d, of an admissible ordinal a to be the least
0 such that AN4§ ¢ L, for some X,(M) set A. He shows that §, = «a iff
« is strongly admissible. He calls « projectible iff , < a. There are many
projectible admissibles — e.g. o = w if « is the least admissible greater
than w. He shows that for every admissible « there is a X;(Ly) injection f,
of L, into d,.
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The definition of projectum of course makes sense for any o > w. By
refinements of Kripke’s methods it can be shown that f, exists for every
a > w and that d, < a whenever a > w is not strongly admissible. We shall
— essentially — prove these facts in chapter 2 (except that, for technical
reasons, we shall employ a modified version of the constructible hierarchy).

1.2 Primitive Recursive Set Functions

1.2.1 PR Functions

The primitive recursive set functions comprise a collection of functions
f:Vvr-=V

which form a natural analogue of the primitive recursive number functions in
ordinary recursion theory. As with admissibility theory, their discovery arose
from the attempt to generalize ordinary recursion theory. These functions
are ubiquitous in set theory and have very attractive absoluteness properties.
In this section we give an account of these functions and their connection
with admissibility theory, though — just as in §1 — we shall suppress some
proofs.

Definition 1.2.1. f: V"™ — V is a primitive recursive (pr) function iff it is
generated by successive application of the following schemata:
(i) f(Z) = x; (here ZFis x1,...,2p)

(i) f(Z) = {zi, 25}

(v) f(y, %) = Ugl(z7)

zZEyY

(vi) f(y, %) = g(y, T, (f(2, D)z € y))

We also define:

Definition 1.2.2. R C V" is a primitive recursive relation iff there is a
primitive recursive function r such that R = {(Z)|r(Z) # 0}.
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(Note It is possible for a function on V' to be primitive recursive as a relation
but not as a function!)

We begin by developing some elementary consequences of these definitions:

Lemma 1.2.1. If f : V" — V 14s primitive recursive and k : n — m, then g
is primitive recursive, where

g(‘rla .. '7xm) = f(xk(l)u ... 7xk(n))'

proof by (i), (iv).

Lemma 1.2.2. The following functions are primitive recursive

(a) By (i), (v), Lemma 1.2.1, since Jz; = U =

z€x;
) @iV =U{wi, 25}
() {&Z} ={x1}U...U{zn}
) By in induction on n, since 0 =z \ z,n+1=nU{n}
)

The proof depends on the precise definition of n—tuple. We could for in-

stance define (z,y) = {{z}, {z,y}} and (z1,...,z,) = (z1, (z2, ..., 2))
for n > 2.

If, on the other hand, we wanted each tuple to have a unique length, we
could call the above defined ordered pair (z,y) and define:

(x1,...,2n) = {(21,0),...,(xp,n — 1)}

QED (Lemma 1.2.2)
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Lemma 1.2.3. (a) ¢ is pr

(b) If f: V"™ = V., R C V™ are primitive recursive, then so is

oty ={ 40 11

(¢) R C V™ is primitive recursive iff its characteristic functions Xgr is a
primitive recursive function
(d) If R C V™ is primitive recursive so is "R =: V"™ \ R
(e) Let f; : V" — VR, C V" be pr(i = 1,...,m) where Ry,..., R, are
n

mutually disjoint and |J R; = V™. Then f is pr where:
i=1

f(Z) = fi(x) when R;Z.
(f) If RzZ is primitive recursive, so is the function

fy, &) = y N {z|R=7}
(g) If RzZ is primitive recursive so is \/ z € yRz&

m
(h) If R;% is primitive recursive i = 1,...,m), then so is \/ R;¥
i=1

(i) If Ry,..., Ry are primitive recursive relations and ¢ in a 3o formula,
then {(Z)|(V, Ry, ..., Ry) = ¢[T]} is primitive recursive.

(G) If f(z,& is primitive recursive, then so are:

9(y, T) = {f(z, 7|z € y}
9y, T) = (f(2,7)]z € y)

(k) If R(z,Z) is primitive recursive, then so is

That z € y such that RzZ if exactly
fly, @) =< one such z € y exists;

0 if not.
Proof.

() gy {z}\y#0
(b) Let RT <> (%) £ 0. Then ¢(z) = |J f(@).
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L[ 1if RE
() X:(@) { 0 if not

(d) X-gr(Z) =1\ Xg(Z)

(e) Let fI(%) = { ézl(ﬁi R;%

Then £(2) = £{()U.. U f1(2).
(f) fly, @) = U h(z, &), where:
zey

| {z}if R2%
Wz, ) = { (0 if not

(g) Let PyZ <»:\/ z € yRzZ. Then Xp(Z) = | Xr(z, 7).
zZEey

m
(h) Let PZ <+ \/ R;Z. Then
=1

1=

Xp({f) = Xp, U...UXRn(f).

(i) is immediate by (d), (g), (h)
() 90y, @) = U{f(z D)} 0 (y.7) = U{{f(2.7),2)}

ZEyY ZEY

(k) R'zuf +<: (2 € u N RzZANNZ € u(z # 2/ — —RZ'F)) is primitive
recursive by (i). But then:

F(y.7) = | Jlwn {=| R zya))
QED (Lemma 1.2.3)

Lemma 1.2.4. Fach of the functions listed in §1 Lemma 1.1.12 is primitive
TECUTSIVE.

The proof is left to the reader.

Note Up until now we have only made use of the schemata (i) — (v). This
will be important later. The functions and relations obtainable from (i)
~ (v) alone are called rudimentary and will play a significant role in fine
structure theory. We shall use the fact that Lemmas 1.2.1 — 1.2.3 hold with
"rudimentary" in place of "primitive recursive".

Using the recursion schema (vi) we then get:

Lemma 1.2.5. The functions TC(z),rn(z) are primitive recursive.
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The proof is the same as before (§1 Corollary 1.1.14).

Definition 1.2.3. f: On" xV"™ — V is primitive recursive iff f’ is primitive
recursive, where

£, 7) :{ f(y, %) if y1,...,y, € On

() if not
As before:
Lemma 1.2.6. The ordinal function oo+ 1,a+ B, - 3,05, ... are primitive
TECUTsive.

Definition 1.2.4. Let f: V"l 5 V.

f%(a € On) is defined by:

ly, @) =y

f My, @) = f(f*(y, ©),7)

Py, 7) = U f(y, &) for limit .

r<A

Then:
Lemma 1.2.7. If f is primitive recursive, so is g(o,y,T) = f*(y, T).
There is a strengthening of the reursion schema (vi) which is analogue to §1
Lemma 1.1.16. We first define:

Definition 1.2.5. Let h : V — V be primitive recursive. h is manageable
iff there is a primitive recursive o : V' — On such that

x € h(y) = o(x) < o(y).

(Hence the relation x € h(y) is well founded.)

Lemma 1.2.8. Let h be manageable. Let g : V"2 — V be primitive recur-
sive. Then f: V™1 =V is primitive recursive, where:

[y, %) = g(y, T, (f(2,2)|z € h(y)))-

Proof. Let o be as in the above definition. Let |z| = lub{|y||ly € h(x)} be
the rank of x in the relation y € h(x). Then |z| < o(z). Set:

O(z.zu) = |J {7 21h@), )y € unhly) C dom(z)}.

YyEu
h(y)Cdom(z)
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By induction on «, if u is h—closed (i.e. x € u — h(x) C u), then:
O%(0,Z,u) = (f(y, D)y €unlyl <a)

Set h(v) =v U |Jh(z). Then h®({y}) in h-closed for a > |y|. Hence:

S

f(y, &) = ©7WH (0,2, k7Y ({y}))(y)-
QED (Lemma 1.2.8)

Corresponding to §1 Lemma 1.1.17 we have:

Lemma 1.2.9. Let u € H,. The constant function f(x) = u is primitive
recursive.

Proof: By e-induction on . QED

As we shall see, the constant function f(xz) = w is not primitive recursive,
so the analogue of §1 Lemma 1.1.18 fails.

In place of §1 Lemma 1.1.19 we get:

Lemma 1.2.10. The class Fin and the function f(x) = P, (x) are primitive
recursive in the parameter w.

Proof: Let f be primitive recursive such that f(0,z) = {{z}|z € =},
fn+1,2) = {uUv|{u,v) € f(n,z)?}. Then Py(x) = |J f(n,r). But then:

new

xEFinH\/nEw\/gE UPZ(Q}Xw)g:on.

nw
QED

Corollary 1.2.11. The constant function f(x) = H,, is primitive recursive
in the parameter w.

Proof: H, = |J P*(0). QED
n<w
Corresponding to Lemma 1.1.21 of §1 we have:

Lemma 1.2.12. The function Def(u) is primitive recursive in the parameter
w.

The proof involves carrying out the proof of §1 Lemma 1.1.21 (which we also
omitted) while ensuring that the relevant classes and functions are primitive
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recursive. We give not further details here (though filling in the details can
be an arduous task). A fuller account can be found in [PR] or [AS].

Hence:

Corollary 1.2.13. The function f(a) = L is primitive recursive in w.

Similarly:
Lemma 1.2.14. The function f(a,x) = Lo(x) is primitive recursive in w.

Lemma 1.2.15. Let A C V be primitive recursive in the parameter p. Then
f(a) = LA is primitive recursive in p.

One can generalize the notion primitive recursive to primitive recursive in
the class A C 'V (or in the classes Ay,..., A, C V).

We define:
Definition 1.2.6. Let Ay,..., A, C V. The function f : V" — V is
primitive recursive in Ay, ..., A, iff it is obtained by successive applications

of the schemata (i) — (vi) together with the schemata:
flz)=Xa,(x)(i=1,...,n).

A relation R is primitive recursive in Ay, ..., A, iff

R ={{D)|f(%) # 0}

for a function f which is primitive recursive in Aq,..., A,.

It is obvious that all of the previous results hold with "primitive recursive in
Aq, ..., A" in place of "primitive recursive".

By induction on the defining schemata of f we can show:

Lemma 1.2.16. Let [ be primitive recursive in Ai,...,A,, where each
A; is primitive recursive in Bi,...,B,,. Then f is primitive recursive in
By,...,Bpn.

The proof is by induction on the defining schemata leading from Aq,..., A,
to f. The details are left to the reader. It is clear, however, that this proof is
uniform in the sense that the schemata which give in f from By, ..., By, are
not dependent on By, ..., By, or Ay,..., A,, but only on the schemata which
lead from Aq,..., A, to f and the schemata which led from By,..., By, to
AZ(Z = 1,... ,n).

This will be made more precise in §1.2.2
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1.2.2 PR Definitions

Since primitive recursive functions are proper classes, the foregoing discus-
sion must ostensibly be carried out in second order set theory. However, we
can translate it into ZF by talking about primitive recursive definitions. By
a primitive recursive definition we mean a finite sequence of equations of the
form (i) — (vi) such that:

e The function variable on the left side does not occur in a previous
equation in the sequence

e every function variable on the right side occurs previously on the left
side with the same number of argument places.

We assume that the language in which we write these equation has been
arithmetized — i.e. formulae, terms, variables etc. have been identified in a
natural way with elements of w (or at least H,).

Every primitive recursive definition s defines a function Fs. If s = (sg, ..., Sp—1),
then F; = F"! where F! interprets the leftmost function variable of s;.

This is defined in a straightforward way. If e.g. s; is "f(y, %) = U g(z,Z)"
zZey
and g was leftmost in s;, then we get

Fi(y,7) = | JF/(z,%).

Let PD be the class of primitive recursive definitions. In order to define
{{(z,s)|s € PD A x € Fs} in ZF we proceed as follows:

Let s = (sg,...,8p—1) € PD. Let M be any admissible structure. By
induction we can then define (Fi™|i < n) where F! a function on M™ (n;
being the number of argument places). By admissibility we know that F!
exists and is defined on all of M™. We then set: FM = FI M This defines
the set (FM|s € PD). If M C M’ and M’ is also admissible, it follows by
an emy induction on i < n that F®*M = F“>M' 1 M. Hence FM ¢ FM'. We
can then set:

F, = {F|M is admissible}.

Note that by §1, each FM has a uniform ¥; definition ¢, which defines FM
over every admissible M. It follows that ¢, defines Fs in V. Thus we have
won an important absoluteness result: Every primitive recursive function has
a X1 definition which is absolute in all inner models, in all generic extensions
of V, and indeed, in all admissible structures

M = (|M]|,€). This absoluteness phenomenon is perhaps the main reason
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for using the theory of primitive recursive functions in set theory. Carol
Karp was the first to notice the phenomenon — and to plumb its depths.
She proved results going well beyond what I have stated here, showing for
instance that the canonical 31 definition can be so chosen, that F [ M is the
function defined over M by ¢, whenever M is transitive and closed under
primitive recursive function. She also improved the characterization of such
M: Call an ordinal « nice if it is closed under each of the function:

fola, B) = a+ B; fila, B) = a- B, fola, B) = P ... ete.

(More precisely: fi+1(a, 8) = ff(a) for i > 1, where fi(a) = fi(a, @), ¢°(a)
is defined by: ¢°(a) = «, ¢?*t1(a) = g(¢°(a)), g* (o) = supg®(«) for limit \.)
<A

v
She showed that L, is primitive recursively closed iff « is nice. Moreover,

LyJAq, ..., A,] is closed under functions primitive recursive in Ay, ..., A, iff
« 18 nice.
Primitive recursiveness in classes A1, ..., A, can also be discussed in terms of

primitive recursive definitions. To this end we appoint new designated func-
tion variable a;(i = 1,...,n), which will be interpreted by X4,(i = 1,...,n).

By a primitive recursive definition in a1, ..., a4, we mean a sequence of equa-
tion having either the form (i) — (vi), in which a4, ..., a, do not appear, or
the form

(*) fz1,...,2p) =ai(zj)(i=1,....,n,5=1,...,p)

We impose our previous two requirements on all equations not of the form
(*).

If s = (so,...,8n—1) is a pr definition in ay,...,ay, we successively define
oA An (i < n) as before, setting Fg’A(xl, oo p) = X g, (x;) if s; has the

form (*). We again set F;Y = F Y The fact that {(z,s)|z € F;Y} is
uniformly (V, €, Ay, ..., A,) definable is shown essentially as before:

Given an admissible M = (|M|, €, a1, ..., a,) we define M FM = FrtM
as before, restricting to M. The existence of the total function FXM follows
as before by admissibility. Admissibility also gives a canonical ;1 definition

s such that
y=FM(@) < Mk ey, 7.

(Thus FM is uniformly ¥ regardless of M.) If M, M’ are admissibles of
the same type and M C M’ (i.e. M is structurally included in M’), then
FM — FM' [ M. Thus we can let F41-+4ns be the union of all FM such
that M = (M|, e, A1 N|M]|,..., A, N|M]) is admissible. ¢ then defines

FA over (V,A). (Here, Karp refined the construction so as to show that
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FATM = FM whenever M = (M|, €, Ay A |M], ..., A, 0 |M]) is transitive
and closed under function primitive recursive in Ai,...,A,. It can also
be shown that M = (|M]|, €,a1,...,ay) is closed under functions primitive

recursive in aq, . . ., a, iff | M| is primitive recursive closed and M is amenable,
(lie.zNA; e M foralz e M,v=1,...,n).

A full account of these results can be found in [PR] or [AS].

We can now state the uniformity involved in Lemma 2.2.19: Let A; C
V' be primitive recursive in Bi,..., B, with primitive recursive def s; in
bi,...,bpm(i = 1,...,m). Let f be primitive recursive in Ay,..., A, with
primitive recursive definition s in aq,...,a,. Then f is primitive recursive
in By, ..., By by a primitive recursive definition s’ in by, ..., by. §' is uniform
in the sense that it depends only on s1,...,s, and s, not on By,...,B;,. In
fact, the induction on the schemata in s implicitly describes an algorithm
for a function

/
S1y---,Sm,S S

with the following property: Let By,..., By, be any classes. Let s; define g;
from B(i =1,...,n). Set: A; = {x|gi(z) #0} ini=1,...,n. Let f be the
function defined by s from A. Then s’ defines f from B.

Note (H,, €) is an admissible structure; hence Fy [ H, = fH«. This shows
that the constant function w is not primitive recursive, since w ¢ H,,. It
can be shown that f : w — w is primitive recursive in the sense of ordinary
recursion theory iff

s | fle)ifzew
/ (x)_{ 0 if not

is primitive recursive over H,. Conversely, there is a primitive recursive map
o : H, < wsuch that f: H, — H,, is primitive recursive over H,, iff o fo~*
is primitive recursive in sense of ordinary recursion theory.

1.3 1ll founded ZF~ models

We now prove a lemma about arbitrary (possibly ill founded) models of
ZF~ (where the language of ZF~ may contain predicates other than €).
Let A = <a,§,B1,...,Bn> be such a model. For X C A we of course

write A|X = (X,% NX2,...). By the well founded core of A we mean the
set of all v € A such that € NC(x)? is well founded, where C(x) is the

closure of {z} under €5. Let wfc(A) be the restriction A|C' of A to its
well founded core C. Then wifc(A) is a well founded structure satisfying
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the axiom of extensionality, and is, therefore, isomorphic to a transitive
structure. Hence A is isomorphic to a structure A’ such that wfc(A’) is
transitive (i.e. wic(A') = (A’, €, m) where A’ is transitive). We call such A’
grounded, defining:

Definition 1.3.1. A = (A, &® .. ) is grounded iff wfc(A) is transitive.

(Note Elsewhere we have called these models "solid" instead of "grounded".
We avoid that usage here, however, since solidity — in quite another sense
— is an important concept in inner model theory.)

By the argument just given, every consistent set of sentences in ZF~ has a
grounded model. Clearly

(1) w C wic(A) if A is grounded.
For any ZF~ model A we have:
(2) If z € A and {z]z €* 2} C wfc(A), then z € wic(A).

Proof: C(z) = {z} UU{C(2)|z €* z}. QED

By Xo—absoluteness we have:

(3) Let A be grounded. Let ¢ be ¥ and let x1, ..., 2, € wic(A). Then
wic() | 9l] © A = o[7].

By €-induction on x € wfc(A) it follows that the rank function is
absolute:

(4) rn(z) = rm®(z) for x € wic(A) if A is grounded.
The converse also holds:
(5) Let rn®(z) € wfc(A). Then = € wfc(A).

Proof: Let 7 = rn®(z). Then r is an ordinal by (3). Assume that r is the
least counterexample. Then rn®(z) < r for z €* x. Hence {z]z €* 2} C
wic(A) and x € wic(A) by (2).

Contradiction! QED

We now prove:
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Lemma 1.3.1. Let A be grounded. Then wic(A) is admissible.

Proof: Axiom (1) and axiom (2) (Xo—subsets) follow trivially from (3). We
verify the axiom of ¥ collection. Let R(x,y) e Xy(wic(A)). Let u € wic(A)
such that Az € u\/ yR(x,y). It suffices to show:

Claim: /v Az €u\y e vR(x,y).

Let R’ be 3Xy(A) by the same definition in the same parameters as R. Then
R = R'nwfc(A)? by (3). If A = wfc(A), there is nothing to prove, so suppose
not. Then there is 7 € On® such that 7 ¢ wfc(A). Hence

A = rn(y) < rfor all y € wic(A)

by (4). Hence there is an r € On® such that
(6) Az cuVy(R (z,y) NA Era(y) <7)

Since A models ZF~, there must be a least such r. But then:
(7) r € wic(A).

Since by (2) there would otherwise be an r’ such that A = ' < r and
r’ ¢ wic(A). Hence (6) holds for /, contradicting the minimality of r.
QED (7)

But there is w such that

8) NxeuVyewR (x,y) Arn(y) <r).

Let A = v = {y € w|Arn(y) < r}. Then rn*(v) < r. Hence rn®(v) €
wic(A) and v € wic(A) by (5). But:

/\:c € u\/y € vRxy.

QED (Lemma 1.3.1)

As immediate corollaries we have:

Corollary 1.3.2. Let 6 = OnnNwic(A). Then Ls(u) is admissible whenever
u € wic(A).

Corollary 1.3.3. L{ = (Ls[A], A N Ls[A]) is admissible whenever A €
X, (A) (since (A, A) is a ZF~ model.
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Note It is clear from the proof of lemma 1.3.1 that we can replace ZF~ by
KP (Kripke-Platek set theory). In this form lemma 1.3.1 is known as Ville’s
Lemma.

1.4 Barwise Theory

Jon Barwise worked out the syntax and model theory of certain infinitary
(but M-finite) languages in countable admissible structures M. In so doing,
he created a powerful and flexible tool for set theory, which we shall utilize
later in this book. In this chapter we give an introduction to Barwise’s work.

1.4.1 Syntax

Let M be admissible. Barwise developed a first order theory in which ar-
bitrary M-finite conjunction and disjunction are allowed. The predicates,
however, have only a (genuinely) finite number of argument places and there
are no infinite strings of quantifiers. In order that the notion "M-finite"
have a meaning for the symbols in our language, we must "arithmetize" the
language — i.e. identify its symbols with objects in M. There are many ways
of doing this. For the sake of definitness we adopt a specific arithmetization
of Mfinitary first order logic:

Predicates: For each z € M and each n such that 1 < n < w we appoint
an n—ary predicate P} =: (0, (n, x)).

Constants: For each z € M we appoint a constant ¢, =: (1, z).

Variables: For each x € M we appoint a variable v, =: (2, z).

Note The set of variables must be M—infinite, since otherwise a single for-
mula might exhaust all the variables.

We let P02 be the identity predicate = and also reserve P12 as the e—predicate

(€).

By a primitive formula we mean Pty ...t, =: (3,(P,t1,...,t,)) where P is
an n—ary predicate and tq,...,t, are variables or constants.
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We then define:
= {4,0), (p V) = (5, (p,¥)),
(P AY) =t (6, (p, 1)), (¢ = ¥) = (T, {0, ¥)),
(p ) =1 (8, {0, ¥)), Ave = (9, (v, 0)),
Ve = (10, (v, ¢)).

The infinitary conjunctions and disjunctions are

/Y\f:: <117f>7Wf:: <127f>

The set Fml of first order M—formulae is then the smallest set X which
contains all primitive formulae, is closed under =, A, V, —, <+, and such that

e If v is a variable and ¢ € X, then Avp € X and \Vvp € X.

o If f =(pili € I) € M and ¢; € X for i € I, then )\ f € X and
W f e X.

(In this case we also write:

N\ ei= MW ei= M T

el i€l

If B is a set of formulae we may also write: X\ B for X\ ¢.)
peB

Proof: It turns out that the usual syntactical notions are Aj(M), includ-
ing: F'ml, Const (set of constants), Vbl (set of variables), Sent (set of all
sentences), as are the functions:

Fr(y) = The set of free variables in ¢

©(Y/t) ~ the result of replacing occurences of the variable v by ¢ (where
t € VblUConst), as long as this can be done without a new occurence
of ¢t being bound by a quantifier in ¢ (if ¢ is a variable).

That Vbl, Const are Aq (in fact Xg) is immediate. The characteristic func-
tion X of Fml is definable by a recursion of the form:

X(z) =Gz, (X(2)]z € TC(x))

where G : M? — M is Ay. (This is an instance of the recursion schema in §1
Lemma 1.1.16. We are of course using the fact that any proper subformula
of ¢ lies in TC(p).)
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Now let h(gp) be the set of immediate subformulae of ¢ (e.g. h(—¢) = {¢},

R(M\pi) = {¢ili € I}, h(Avyp) = {p} etc.) Then h satisfies the condition in
el
§1 Lemma 1.1.16. It is fairly easy to see that

Fr(p) = G(p, (F(z)|z € h(p)))

where G is a ¥ function defined on Fml. Then Sent = {¢|Fr(¢) = 0}.

To define ¢(Y/t) we first define it on primitive formulae, which is straightfor-
ward. We then set;:

(e A)(Y/t) = (p(*/t) Ap(Y/t)) (similarly for A, —, )
—p(%/t) = =((/1))
(Mei) (/1) = M (pi(*/t)) similarly for \¥/.

iel el
Nupifu=wv
(Aup)(¥/t) ~ < Au(p(®/t)) if u # v,t (similarly for \/)

otherwise undefined

This has the form:

p(*/1) = Glp, v, (X (/)| X € hp))),

where G is X1 (M). The domain of the function f(¢,v,t) = @(%/t) is A (M),
however, so f is M-recursive.

(We can then define:

("t t) = (Y wr) L (T wn) (YY) L (Y )

where v1,...,v, is a sequence of distinct variables and wy,...,w, is any
sequence of distinct variables which are different from vq,...,v,, t1,...,t,
and do not occur bound or free in . We of cours follow the usual conventions,
writing @(t1,...,t,) for vp(*1vn/ty, ... t,), taking vy, ..., v, as known.)

M —finite predicate logic has the axioms:

e all instances of the usual propositional logic axiom schemata (enough
to derive all tautologies with the help of modus ponens).

e Nwi—wj, i = Wi (jeUeM)
il iU

o Nz = p(*/t), o(*/t) = Vayp
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o z=y = (p(x) < ¢(y))
The rules of inference are:

o W (modus ponens)

o gpfi\)i}w if x ¢ Fr(y)

° \/ﬁsz if x ¢ Fr(y)

* e (e

o S e )

We say that ¢ is provable from a set of sentences A iff ¢ is in the smallest set
which contains A and the axioms and is closed under the rules of inference.
We write A F ¢ to mean that ¢ is provable from A. F ¢ means the same as
0F .

However, this definition of provability cannot be stated in the 1st order lan-
guage of M and rather misses the point which is that a provable formula
should have an M—finite proof. This, as it turns out, will be the case when-
ever Ais X (M). In order to state and prove this, we must first formalize the
notion of proof. Because we have not assumed the axiom of choice to hold
in our admissible structure M, we adopt a somewhat unorthodox concept of
proof:

Definition 1.4.1. By a proof from A we mean a sequence (p;|i < «) such
that @ € On and for each ¢ < o, p; C Fml and whenever ¢ € p;, then either

¥ € A or ¢ is an axiom or v follows from |Jp, by a single application of
h<i
one of the rules.

Definition 1.4.2. p = (p;|i < «is a proof of ¢ from A iff p is a proof from
Aand p € pi.

<o
(Note that this definition does not require a proof to be M—finite.)

It is straightforward to show that ¢ is provable iff it has a proof. However,
we are more interested in M—finite proofs. If A is 31(M) in a parameter
q, it follows easily that {p € M|p is a proof from A} is X1 (M) in the same
parameter. A more interesting conclusion is:

Lemma 1.4.1. Let A be X,(M). Then A& ¢ iff there is an M—finite proof
of v from A.
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Proof: (+) trivial. We prove (—)
Let X = the set of ¢ such that there is p € M which proves ¢ from A.
Claim: {¢|AF ¢} C X.

Proof: We know that A C X and all axioms lie in X. Hence it suffices to
show that X is closed under the rules of proof. This must be demonstrated
rule by rule. As an example we show:

Claim: Let ¢ — 1; be in X for i € u. Then ¢ — M\ ¢ € X.
€U

Proof: Let P(p, ) mean: pis a proof of ¢ from A. Then P is ¥;(M). We
have assumed:

(1) nieuwV, P(p,e = i)
Now let P(p;,x) > \/ 2P'(z, pi, x) where P’ is ¥y. We than have:

(2) NieuVNpV 2P (z,p,¢ — i)
Hence there is v € M with:

(3) NicuVp,zecvP(z,p,¢— i)
Set: w={pev|\Vieu\zevP(z,p,0— )}
Set: a = |J dom(p). For i < « set:
pew

¢ = U{pi|p € wAi € dom(p)}

Then ¢ = (¢;|i < a) € M is a proof.

But then ¢"{ M\ ¢;} is a proof of N\ ;. Hence M\v; € X.
ieU ieU ieU
QED (Lemma 1.4.1)

From this we get the M —finiteness lemma:

Lemma 1.4.2. Let A be ¥,(M). Then At ¢ iff there is a C A such that
a €M andat o

Proof: (+) is trivial. We prove (—). Let p € M be a proof of ¢ from A.
Set:

a = the set of ¢ such that for some ¢ € dom(p), ¢ € p; and ¥ is neither an

axiom nor follows from (Jp; by an application of a single rule.
1<
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Then a C A, a € M, and p is a proof of ¢ from a. QED (Lemma 1.4.2)

Another consequence of Lemma 1.4.1 is:

Lemma 1.4.3. Let A be X1(M) in q. Then {p|A F ¢} is X1(M) in the
same parameter (uniformly in the 31 definition of A).

Proof: {¢|AF ¢} ={¢|Vp € m p proves ¢ from A}.

Corollary 1.4.4. Let A be ¥1(M) in q. Then "A is consistent” is 11y (M)
in the same parameter (uniformly in the X1 definition of A).

"p proves ¢ from " is uniformly 3;(M). Hence:
Lemma 1.4.5. {(u,)|u € m Aut ¢} is uniformly X1(m).
Corollary 1.4.6. {(u € M|u is consitent} is uniformly II;(m).

Note. Call a proof p strict iff P; = 1 for i € dom(p). This corresponds
to the more usual notion of proof. If M satisfies the axiom of choice in the
form: Every set is enumerable by an ordinal, then Lemma 1.4.1 holds with
"strict proof" in place of "proof". We leave this to the reader.

1.4.2 Models

We will not normally employ all of the predicates and constants in our M-
finitary first order logic, but cut down to a smaller set of symbols which we
intend to interpret in a model. Thus we define a language to be a set IL of
predicates and constants. By a model of I we mean a structure:

A = (A, (t]t € L))

such that |A| # (), P* C |A|™ whenever P is an n-ary predicate, and ¢® € |A|
whenever ¢ is a constant. By a variable assignment we mean a map of f of
the variables into A. The satisfaction relation A | ¢|[f] is defined in the
usual way, where A |= [f] means that the formula ¢ becomes true in A if
the free variables of ¢ are interpreted by the assignment f. We leave the
definition to the reader, remarking only that:
A Neilfl & Ni€uh = gilf]
€U
AEWeilfl < VieuhEgilf]
€U
We adopt the usual conventions of model theory, writing A = (|A|,#4,...) if
we think of the predicates and constants of L as being arranged in a fixed
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sequence t1,ta,.... Similarly, if ¢ = ¢(v1,...,vy,) is a formula in which at
most the variables vy,..., v, occur free, we write A = play,...,ay] for:

A = ¢[f] where f(v;) =a; fori=1,...,n.

If  is a sentence we write: A = ¢. If A is a set of sentences, we write A - A
to mean: A |= ¢ for all p € A.

Proof: The correctness theorem says that if A is a set of L sentences and
A = A, then A is consistent. (We leave this to the reader.)

Barwise’s Completeness Theorem says that the converse holds whenever our
admissible structure is countable:

Theorem 1.4.7. Let M be a countable admissible structure. Let IL be an
M -language and let A be a set of statements in L. If A is consistent in
M ~finite predicate logic, then I has a model A such that A = A.

Proof: (Sketch)

We make use of the following theorem of Rasiowa and Sikorski: Let B be a
Boolean algebra. Let X; C B(¢ < w) such that the Boolean union |J X; = b;
exists in the sense of B. Then B has an ultrafilter U such that

biEUHXiﬂU#Q)fOI‘Z'<w.

(Proof. Successively choose ¢;(i < w) by: cog = 1, ¢iy1 = ¢; Nb # 0, where
be X;U{=b}. Let U= {a € B|\ic; Ca}. Then U is a filter and extends
to an ultrafilter on B.)

Extend the language L by adding an M—infinite set C of new constants. Call
the extended language L*. Set:

[o] = {Y|AF (¢ < )}
for L*~sentences ¢. Then
B =: {[¢lly € Senty-}
in the Lindenbaum algebra of L* with the defining equations:
[plU ] = [o Vol [l N ] = [p Av], —le] = [-¢]
U il = [Meil@ € u), N [0l = [Mel(@ € u)

i€U i€U i€U i€y
gc[w(C)] = [Voe(v)), Qc[w(C)] = [Ave(v)].

The last two equations hold because the constants in C', which do not occur in
the axiom A, behave like free variables. By Rasiowa dn Sikorski there is then
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an ultrafilter U on B which respects the above operations. We define a model
A = (JA|, (t*|t € L)) as follows: For ¢ € C set [c] =: {¢/ € C|[c = ] € U}.
If p € L is an n—place predicate, set:

PA([e], ..., [en]) 1 [Per,. .. en] € UL
If t € L is a constant, set:
t* =[] where c € O, [t =] € U.
A straightforward induction then shows:

AEollal, ..., [en] & [pler, ... cn)] €U

for formulae ¢ = p(v1,...,v,) with at most the free variables vy,...,v,. In
particular, A |= ¢ <> [p] € U for L*—statements ¢. Hence A = A.
QED (Theorem 1.4.7)

Combining the completeness theorem with the M—finiteness lemma, we get
the well known Barwise compaciness theorem:

Corollary 1.4.8. Let M be countable. Let 1L be a language. Let A be a
X, (M) set of sentences in L. If every M—finite subset of A has a model,
then so does A.

1.4.3 Applications

Definition 1.4.3. By a theory or aziomatized language we mean a pair
L = (Lo, A) such that L is a language and A is a set of Ly—sentences. We
say that A models L iff A is a model of Ly and A = A. We also write L - ¢
for: (p € Fmly, and A F ¢). We say that L = (Lo, A) is £1(M) (in p) iff
Lo is Ay(M) (in p) and A is ¥1(M) (in p). Similarly for: L is A(M) (in p).

We now consider the class of axiomazized languages containing a fixed pred-
icate €, the special constants z(z € M) (we can set e.g. z = (1,(0,2))), and
the basic axioms:

o Extensionality
o Nv(véx +» N v=z) for x € M.

FASHY

(Further predicates, constants, and axioms are allowed of course.) We call
any such theory an "€—theory". Then:
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Lemma 1.4.9. Let A be a grounded model of an €-theory L. Then z® =
x € wic(A) forx € M.

In an €-theory L we often adopt the set of axioms ZFC™ (or more precisely
ZFC[ ). This is the collection of all L-sentences ¢ such that ¢ is the universal
quantifier closure of an instance of the ZFC™ axiom schemata — but does
not contain infinite conjunctions or disjunctions. (Hence the collection of all
subformulae is finite.) (Similarly for ZF~, ZFC, ZF.)

(Note If we omit the sentences containing constants, we get a subset B C
ZFC™ which is equivalent to ZFC™ in L. Since each element of B contain
at most finitely many variables, we can restrict further to the subset B’ of
sentences containing only the variables v;(i < w). If w € M and the set
of predicates in L is M-finite, then B’ will be M-finite. Hence ZFC™ is
equivalent in L to the statement /X\ B’.)

We now bring some typical applications of e-theories. We say that an ordinal
a is admissible in a C a iff (Ly[a], €, a) is admissible.

Lemma 1.4.10. Let o > w be a countable admissible ordinal. Then there is
a C w such that « is the least ordinal admissible in a.

This follows straightforwardly from:

Lemma 1.4.11. Let M be a countable admissible structure. Let L be a
consistent X,(M) €-theory such that L = ZF~. Then L has a grounded
model A such that A # wic(A) and OnNwfc(A) = OnNM.

We first show that lemma 1.4.11 implies lemma 1.4.10. Take M = L. Let
L be the M—theory with:

Predicate: €
Constants: z(z € M),a

Axioms: Basic axioms +ZFC™ +ﬁ is not admissible in a

Then L is consistent, since (H,,,€,a) is a model, where a is any a C w
codes a well ordering of type > «a. Let L be a grounded model of IL such
that wfc(A) # A and On Awfc(A) = a. Then wic(A) is admissible by §3.
Hence so is Ly[a] where a = a*. QED

Note This is a very typical application in that Barwise theory hands us an ill
founded model, but our interest is entirely concentrated on its well founded
part.
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Note Persuing this method a bit further we can use lemma 1.4.11 to prove:
Let w < ap < ... < ap—1 be a sequence of countable admissible ordinals.
There is a C w such that a; = the i—theory a < w which is admissible in
a(l=0,...,n—1).

We now prove lemma 1.4.11 by modifying the proof of the completeness
theorem. Let I'(v) be the set of formulae: v € On, v > (8 € OnAM). Add
an M-infinite (but A;(M)) set E of new constants to L. Let L be L. with
the new constants and new axioms: I'(e) (e € E). Then L’ is consistent,
since any M-finite subset of the axioms can be modeled in an arbitrary
grounded model A of L by interpreting the new constants as sufficiently
large elements of a. As in the proof of completeness we then add a new
class C' of constants which is not M—finite. We assume, however, that C' is
A1(M). We add no further axioms, so the elements of C' behave like free
variables. The iv extended language I is clearly X, (M).

Now set:
A@)=:{v¢On}u [ J{v<ptu | J{e <}
BseM eckE

Claim Let ¢ € C. Then J{[¢]|¢ € A(c)} =1 in the Lindenbaum algebra of
L”.

Proof: Suppose not. Then there is ¢ such that A+ ¢ — 1 for all ¢ € A(c)
and AU {1} is consistent, where L” = (ILjj, A). Pick an e € E which does
not occur in t. Let A* be the result of omitting the axioms I'(e) from A.
Then A* U {-9} UT(e) F ¢ < e. By the finiteness lemma there is § € M
such that A* U {9y} U{B < e} F ¢ < e. But e behaves here like a free
variable, so A* U {-¢} F ¢ < . But A D> A* and AU {—} I B < ¢. Hence
AU{=Y}F B < B and AU {1} is inconsistent. B

Contradiction! QED (Claim)

Now let U be an ultrafilter on the Lindenbaum algebra of I.” what respects
both two operations listed in the proof of the completeness theorem and the
unions (J{[¢]|l¢ € A(c)} for ¢ € C. Let X = {p|[¢] € U}. Then as before,
L” has a grounded model A, all of whose elementes have the form ¢* for
a Ce C and such that:

AEgpiff pe X

for L”-statements ¢. But then for each z € A we have either x ¢ Ony or
x < fforaf € OnnNM or e < v for all e € E. In particular, if 2 € Ony
and = > B for all # € OnNM, then there is e® < z in A. But 8 < e* for all
B € OnNM. Hence Ony \ Onys has no minimal element in A.

QED (Lemma 1.4.11)

Another typical application is:
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Lemma 1.4.12. Let W be an inner model of ZFC. Suppose that, in W, U
is a normal measure on r. Let T > u be regular in W. Set: M = (HV U).
Assume that M is countable in V. Then for any o C u there is M = (H,U)
such that

e M =U is a normal measure on & for a & € M

o M iterates to M in o many steps.
(Hence M is iterable, since M is.)

Proof: The case a = 0 is trivial, so assume « > 0. Let § be least such that
Ls(M) is admissible. Let L be the e-theory on Ls(M) with:

Predicate: €
Constants: z(x € Ls(M)), M

Axiom: e Basic axioms +ZFC™
e M = (H,U) = (ZFC™ +U is a normal measure on a k£ < H)

e M iterates to M in o many steps.

It will suffice to show:
Claim L is consistent.

We first show that the claim implies the theorem. Let A be a grounded model
of L. Then Ls(M) C wfc(A). Hence M, M € wfc(A), where M = M*. But
then in A there is an iteration (M;|i < a) of M to M. By absoluteness
(M;|i < a) really is such an iteration. QED

We now prove the claim.

Case 1 a <k

Iterate (W,U) « many times, getting (W;,U;)(i C «) with iteraton maps
mi ;. Then m () = . Set M; = mo1(M). Then (M;|i < «) is an iteration
of M with iteration maps m; ; [ M;. But My = mo(M). Hence (H,+, M)
models 7y (L). But then 7 o (L) is consistent. Hence so is L. QED

Case 2 a =k

Iterate (W,U) 8 many times, where 79 g(k) = 8. Then (M;|i < j3) iterates
M to Mg in B many steps. Hence (H,+, M) models my g(IL). Hence m g(LL)
is consistent and so is L. QED (Lemma 1.4.12)
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Barwise theory is useful in situations where one is given a transitive struc-
ture Q and wishes to find a transitive structure @ with similar properties
inside an inner model. Another tool, which is often used in such situations,
is Schoenfield’s lemma, which, however, requires coding @ by a real. Unsur-
prizingly, Schoenfield’s lemma can itself be derived from Barwise theory. We
first note the well known fact that every X} condition on a real is equivalent
to a X1(H,, ) condition, and conversely. Thus it suffices to show:

Lemma 1.4.13. Let H,, = ¢la],a C w, where ¢ is ¥1. Then:

H., k= ola) in L(a).

Proof: Let ¢ =\/ 21, where ¢ is Xy. Let H,, = [z, a] where
m(z) =0 < a < w; and « is admissible in a. Let L be the language on
L, (a) with:

Predicate: €
Constants: z(z € L,(a))

Axioms: Basic acioms +ZFC™ +\/ z(¢(z,a) Arn(z) = 9).

Then L is consistent, since (H,,,a) is a model. We cannot necessarily chose
a such that it is countable in L(a), however. Hence, working in L(a), we
apply a Skolem-Lowenheim argument to L,(a), getting countable @, &,
such that 7 : Lg(a) < La(a) and m(8) = 4. Let L be defined from §
over Lz(a) as L was defined from & over L,(a). Then L is consistent by
corollary 1.4.4. Since Lz(a) is countable in L(a), L has a grounded model
A € L(a). But then there is z € A such that A = ¢[z,a] and rn®(z) = 4.
Thus rn(z) = B € wfc(A) and 2z € wfc(A). Thus wic(A) = vz, a], where
wic(A) C H,, in L(a). Hence H,, = ¢[a] in L(a). QED
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Chapter 2

Basic Fine Structure Theory

2.1 Introduction

Fine structure theory arose from the attempt to describe more precisely the
way the constructable hierarchy grows. There are many natural natural
questions. We know for instance by Gédel’s condensation lemma that there
are countable v such that L, models ZFC™ 4w exists. This means that
some 3 < 7y is a cardinal in L, but not in L. Hence there is a subset b C 8
lying in L but not in L.. Hence there must be a least o > v such that such
a subset lies in L,41 = Def(L,). What happens there, and what do such «
look like? It turns out that there is then a ¥ (L) injection of L, into 3,
and that a can be anything — even a successor ordinal.

In chapter 1 we developed an elaborate body of methods for dealing with
admissible structures. In order to deal with questions like the above ones,
we must try to adapt these methods to an arbitrary L,. A key concept in
this endeavor is that of amenability:

Definition 2.1.1. A transitive structure M = (|M|, €, Ay, ..., Ay) is amenable
ffA,NnzeMforalz e M,i=1,...,n.

Thus, as stated at the end of chapter 1, §1.1, an « > w is strongly admissible
iff (Ly, A) is amenable for all ¥,(L,) sets A. Using this as a starting point,
we sketch (omitting all details!) the fine structural proof that if b C 8 < «
and b € Lot1 \ Lo, then there is a X, (L) injection of L, into . Suppose,
first, that b is X;(La). Then 3 > p° where p¥ is the projectum of L. But
as stated in chapter 1, §1.1, there is then a X;(Ls) injection f° of L, into
p®, which proves the result. Now suppose that b is Xo(Ls) but not 3;(Lo)
and that 8 < p. By the existens of f0 there is a X (Ly) set A° C p° which

43
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completely codes Lo. N® = (L,,, A% is then amenable and b is X;(N?).
Thus 8 > p', where p! is the projectum of N°. However, N° is so much like
an L, that there is a X;(N?) injection f! of N? into p'. Thus flo fis a
¥, (La) injection into p* > B. If b is X4(Ls) but not $y(Ly) and B < pl, we
go one step further, forming N' = (J,,, A') which codes N and note that
b is now X;(N') etc. Note that, since a > p® > p', ..., the sequence of p’

must stabilize at some point.

The first proof of the above result was due to Hilary Putnam and did not use
the full fine structure analysis we have just outlined. However, our analysis
yielded many new insights; giving for instance the first proof that L, is X,
uniformizable for all n > 1. (Le. every X, relation is uniformizable by a X,
function.)

Not long afterwards fine structure theory was used to prove some deep global
properties of L, such as:

L = Op for all infinite cardinals 5.

It was also used to prove the covering lemma for L. That, in turn, led to
extended versions of fine structure theory which could be used to analyze
larger inner models, in which some large cardinals could be realized. (Here,
however, the fine structure theory was needed not only to analyze the inner
model, but even to define it in the first place.)

Carrying out the above analysis of L requires a very fine study of definability
over an arbitrary L. In order to achieve this, however, one must overcome
some formidable technical obstacles which arise from Goédel’s definition of
the constructible hierarchy: At successors «, L, is not even closed under
ordered pairs, let alone other basic set functions like unit set, crossproduct
etc. One solution is to employ the theory of rudimentary functions in an
auxiliary role. These functions, which were discovered by Gandy and Jensen,
are exactly the functions which are generated by the schemata for primitive
recursive functions when the recursion schema is omitted. (Cf. the remark
following chapter 1, §2, Lemma 1.1.4). If rn(z;) < yfori=1,...,nand fis
rudimentary, then rn(f(x1,...,2,)) < 7+ w. All reasonable "elementary"
set theoretic functions are rudimentary. If « is a limit ordinal, then L,
is closed under rudimentary functions. If « is a successor, then closing L,
under rudimentary functions yields a transitive structure L7, of rank ar+w. It
then turns out that every X ,(L}) definable subset of L, is already X ,(L%),
and conversely. Hence we can, in effect, replace the rather weak definability
theory of L, by the rather nice definability theory of LY. (This method was
used in [JH|, except that LY was given a different but equivalent definition,
since the rudimentary functions were not yet known.) It turns out that if N is
transitive and rudimentarily closed, and Rud(N) is defined to be the closure
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of N U{N} under rudimentary functions, then P(N) N Rud(N) = Def(N).
This suggests an alternative version of the constructible hierarchy in which
every level is rudimentarily closed. We shall index this hierarchy by the class
Lm of limit ordinals, setting;:

Jo = H, = Rud(0)
Jo+w = Rud(J,) for a € Lm

Jy= U J, for A alimit p.t. of Lm.
v<A

(Note Setting J = |JJn, we have: J = L in fact J, = L, whenever « is pr
o
closed.)

(Note This indexing was introduced by Sy Friedman. In [FSC| we indexed
by all ordinals, so that our J,, corresponds to the J, of [FSC|. The usage
in [FSC] has been followed by most authors. Nonetheless we here adopt
Friedman’s usage, which seems to us more natural, since we then have: o =

rn(J,) = OnNJdy,.)

In the following section we develop the theory of rudimentary functions.

2.2 Rudimentary Functions

Definition 2.2.1. f : V" — V is a rudimentary (rud) function iff it is
generated by successive applications of schemata (i) — (v) in the definition
of primitive recursive in chapter 1, §2.

A relation R C V™ is rud iff there is a rud function f such that: RZ <
f(@) = 1. In chapter 1, §1.2 we established that:

Lemma 2.2.1. Lemmas 1.2.1 — 1.2.4 of chapter 1, §1.2 hold with rud’ in
place of 'pr’.

(Note Our definition of rud function’, like the definition of 'pr function’ is
ostensibly in second order set theory, but just as in chapter 1, §1.2 we can
work in ZFC by talking about rud definitions. The notion of rud definition
is defined like that of pr definition, except that instances of schema (vi) are
not allowed. As before, we can assign to each rud definition s a rud function
F, : V™ = V with the property that FM = F, | M whenever M is admissible
and FM : M™ — M is the function on M defined by s. But then if M is
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transitive and closed under rud functions, it follows by induction on the
length of s that there is a unique FM = F, [ M.)

A rudimentary function can raise the rank of its arguments by at most a
finite amount:

Lemma 2.2.2. Let f: V™ =V be rud. Then there is p < w such that
f(@) CcPP(TC(x1U...Uxy)) for all x1,...,xp,.

(H)egce r(fZ) < max{rn(z1),...,m(z,)} +p and Y f(Z) c TC(x1U... U

Proof: Call any such p sufficient for f. Then if p is sufficient, so is every
g > p. By induction on the defining schemata for f, we prove that f has
a sufficient p. If f is given by an initial schema, this is trivial. Now let
f(@) = h(g1(Z),...,gm(Z)). Let p be sufficient for h and g be sufficient for
gi(t = 1,...,m). It follows easily that p + ¢ is sufficient for f. Now let

fly, ) = Ug(z, &), where p is sufficient for g. It follows easily that p is
zZEeY
sufficient for f. QED

By lemma 2.2.1 and chapter 1 lemma 1.2.3 (i) we know that every X relation
is rud. We now prove the converse. In fact we shall prove a stronger result.
We first define:

Definition 2.2.2. f: V"™ — V is simple iff whenever R(z, ¥) is a ¥ relation,
then so is R(f(%), 7).

The simple functions are obviously closed under composition. The simplicity
of a function f is equivalent to the conjunction of the two conditions:

(i) = € f(¥) is o
(i) If A(z, @) is X, then A\ z € f(Z)A(z,u) is Yo,

for given these we can verify by induction on the ¥g definition of R that

R(f(%),y) is Xo.
But then:

Lemma 2.2.3. All rud functions are simple.

Proof: Using the above facts we verify by induction on the defining schemata
of f that f is simple. The proof is left to the reader. QED

In particular:
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Corollary 2.2.4. FEvery rud function f is Xg as a relation. Moreover f[U
is uniformly ¥o(U) whenever U is transitive and rud closed.

Corollary 2.2.5. Every rud relation is Xg.

In chapter 1, §2 we relativized the concept 'pr’ to 'prin Aq,..., A,’. We can
do the same thing with ’rud’.

Definition 2.2.3. Let A; C V(i=1,...,m). f: V"™ — V is rudimentary in
A, ... A, (rud in Aj,..., A,) iff it is obtained by successive applications
of the schemata (i) — (v) and:

f@) =xalz) (i=1,...,n)
where x4 is the characteristic function of A.
Lemma 1.1.1 and 1.1.2 obviously hold with rud in Ay,..., A, in place of

'rud’. Lemma 2.2.3 and its corollary do not hold, however, since e.g. the
relation {z} € A is not ¥y in A.

However, we do get:

Lemma 2.2.6. If f isrud in Ay,..., A,, then

f(f) = fo(f, AN fl(f), AN fn<f))

where fo, f1,..., fn are rud functions.

Proof: We display the proof for the case n = 1. Let f be rud in A. By
induction on the defining schemata for f we show:

f(@) = fo(Z, AN f1(Z)) where fo, f1 are rud.

Case 1 f is given by schemata (i) — (iii). This is trivial.
Case 2 f(x) = X4(x). Then

1@ ={ g i P = a0 @)

where f’ is rud. QED (Case 2)

Case 3 f(¥) = g(h'(%),...,h™(Z)). Let
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where go, g1, b}y, hY are rud. Set:

4(2,0) = golZ, 40 01(2)

@Z(:E, u) = ho (T, un h’l(i"))

f(# u) = g(h(z, u),n.1 y R (Z ), u)
k(&) = () i@

hi(E, ANwv) = hi (&, AN KL(E)) = hi(Z) if hi(Z) C v
§(Z,ANv) = go(Z, AN z2) if g1(2) C .
QED (Case 3)
Case 4 f(yaf) = Ug('z?f) Let g(zv‘f) = gO(z7faAﬂgl(zaf))' Set

zZey
9(z,&,u) = go(z, Z,uN g1(z, T))
fly, @, u) = Ug(zvau)
zEey
k(yv'f) = Ugl<z7f)
zey

Then f(y,Z) = f(y, %, AN k(y, Z)) where f, k are rud.
QED (Lemma 2.2.6)

Definition 2.2.4. X is rudimentarily closed (rud closed) iff it is closed
under rudimentary functions. (M, Ay, ..., A,) is rud closed iff M is closed
in functions rudimentary in Ay,..., A,.

If M = (|M|,A,...,A,) is transitive and rud closed, then it is amenable,
since it is closed under f(z) =z N A. By lemma 2.2.6 we then have:

Corollary 2.2.7. Let M = (|M|Ax, ..., Ay) be transitive. M is rud closed
iff it is amenable and |M| is rud closed.

Corresponding to corollary 2.2.4 we have:

Corollary 2.2.8. Fvery function f which is rud in A is X1 in A as a
relation. Moreover f U is 31((U, ANU)) by the same 31 definition whenever
(U, ANU) is transitive and rud closed. (Similarly for "rud in Aq,..., Ap".)

Proof: Let f(Z) = fo(Z, AN f1(Z)) where fo, f1 are rud. Then:

y = f(Z) <—>\/u\/z(y:fo(f,z)/\u:fl(a_:’)/\z:Aﬂu).
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QED (Corollary 2.2.8)

In chapter 1 §2.2 we extended the notion of "pr definition" so as to deal with
functions pr in classes Ai,...,A,. We can do the same for rudimentary
functions:

We appoint new designated function variables ay, ..., a, and define the set of
rud definition in a1, ..., a, exactly as before, except that we omit the schema
(vi). Given Ay, ..., A, we can, exactly as before, assign to each rud definition
s in aq,...,a, a function F§41""’A” are then exatly the functions rud in
A1,...,A,. Since lemma 2.2.6 (and with it corollary 2.2.8) is proven by
induction on the defining schemata, its proof implicitly defines an algorithm
which assigns to each s as ¥y formula ¢4 which defines FA.

Corresponding to chapter 1 §1 Lemma 1.1.13 we have:

Lemma 2.2.9. Let f berud in Ay, ..., A,, where each A; istud in By,. .., By,.
Then f isrud in By,..., Bn,.

The proof is again by induction on the defining schemata. It shows, in fact
that f is wniformly rud in B in the sense that its rud definition from B
depends only on its rud definition from A and the rud definition of A; from

—

B(i=1,...,n).
We also note:

Lemma 2.2.10. Let 7 : M —x, M, where M, M are rud closed. Then
7 preserves rudimentarily in the following sense: Let f be defined from the
predicates of M by the rud definition s. Let f be defined from the predicates
of M by s. Then n(f(Z)) = f(n(Z)) for x1,...,2, € M.

Proof: Let s be the canonical 1 definition. Then M = ¢ [y, 7] — M =
ws|m(y), 7(Z)] by Xo—preservation. QED (Lemma 2.2.10)
We now define:

Definition 2.2.5.
rud(U) =: The closure of U under rud functions

rudg,,.. a,(U) =: The closure of U under functions rud in Ay,..., 4,

(Hence rud(U) = rudy(U).)

Lemma 2.2.11. If U is transitive, then so is rud(U).
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Proof: Let W = rud(U). Let Q(z) mean: TC({z}) C W. By induction on
the defining schemata of f we show:

Q1) Ao AQ(x)) = Q(f (21, .., 240))

for z1,...,z, € W. The details are left to the reader. But x € U — Q(x)
and each z € W has the form f(Z) where f is rud and x4, ..., 2, € U. Hence
TC({z}) Cc W for z € W. QED

The same proof shows:

Corollary 2.2.12. If U is transitive, then so is rud z(U).

Using Corollary 2.2.12 and Lemma 2.2.3 we get:

Lemma 2.2.13. Let U be transitive and W = rud(U). Then the restriction
of any Xy(W) relation to U is Xy(U).

Proof: Let R be X3(W). Let R(Z) «» R/(Z,p) where R’ is Xo(W) and
Ply...,pn € W. Let p; = fi(Z), where f; is rud and z1,...,2, € U. Then
for x1,...,z, € U:
R(T) + R(7 f(7))
< R"(%,2)
where R” is ¥ (U), by lemma 2.2.3. QED (Lemma 2.2.13)

We now define:
Definition 2.2.6. Let U be transitive.

Rud(U) =: rud(U U{U})
Rud 4(U) =: rud 4(U U {U})

Then Rud(U) is a proper transitive extension of U. By Lemma 2.2.13:
Corollary 2.2.14. Def(U) =P(U) NRud(U) if U # 0 is transitive.

Proof: If A € Def(U), then A is Xo(U U{U}). Hence A € Rud(U). Con-
versely, if A € Rud(U), then A is y(U U {U}) by lemma 1.1.7. It follows
easily that A € Def(U). QED (Corollary 2.2.14)

[Note To see that A € Def(U), consider the €-language augmented by a
new constant U which is interpreted by U. We assign to every Yo formula
¢ in this language a first order formula ¢’ not containing U such that for all
T1,...,Tn € U:

UU{UY ki) & U E ¢4,
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(Here x; is taken to interpret v; where v1,..., v, is an arbirtrarily chosen of
distinct variables, including all variables which occur free in ¢.) We define
¢’ by induction on ¢. For primitive formulae we set first:

(yEw)’:vew,(yEU)’:v:v,
Uev)=v#v,(UeclU)=\Vvv#o.

For sentential combinations we do the obvious thing:
(e AY) =@ AY), (=) = ¢,
etc. Quantifiers are treated as follows:

(Avewp) =Avewy
(AveUp) = Avy']

Given finitely many rud functions si,...,s, we say that they constitute a
basis for the rud function iff every rud function is obtainable by successive
application of the schemata:

o flx1,...,zn)=2; (j=1,...,n)

o f(Z)=s5i(91(T), ..., gm(T) (i =1...,p)

Note that if s1,...,s, is a basis, then rud(U) is simply the closure of U
under the finitely many functions si,...,s,. We shall now prove the Basis
Theorem, which says that the rud functions possess a finite basis. We first
define:

Definition 2.2.7. (z,y) =: {{z},{z,y}}; (z) = =,
(x1,...,2n) = (21, (22,...,2p)) for n > 2.

(Note: Our "official" notation for n—tuples is (z1,...,x,). However, we
have refrained from specifying its definition. Thus we do not know whether

(Z) = (2).)
We also set:
Definition 2.2.8.

rRy={(z,w)|z€xANw ey}
dom®(z) = {z|Vy(y,2) € =}
"z ={yl(y, 2) € x}
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Theorem 2.2.15. The following functions form a basis for the rud function:

Fo(x, y) = {ZL‘, y}

Fl(xv y) =T \ Yy

Fy(z,y) =z®y

Fs(z,y) = {(u,z,v)|z € x A (u,v) € y}
Fy(z,y) = {(u,v,2)|z € x A (u,v) € y}
F5(x,y) = U:E

Fs(x,y) = dom™(z)

Fr(x,y) = {(z,w)|z,w € x A z € w}
Fy(z,y) = {z*z|z € y}

Proof: The proof stretches over several subclaims. Call a function f good
iff it is obtainable from Fy,..., Fg by successive applications of the above
schemata. Then every good function is rud. We must prove the converse.
We first note:

Claim 1 The good functions are closed under composition —i.e.if g, hy, ..., hy

—

are good, then so is f(Z) = g(h(X)).

Proof: Set G = the set of good function g(yi,...,¥yy) such that whenever
hi(¥) is good for i = 1,..., 7, then so is f(¥) = g(h(Z¥)). By a straightforward
induction on the defining schemata it is easily shown that all good functions

are in G. QED (Claim 1)

Claim 2 The following functions are good:

{z,yh 2\ y, 2@y, 20y =U{z,y},
mﬂy:x\(x\y),{xl,...,azn}:{xl}U...U{xn},

——
Cn(u):uUUuU...UU...UU,(ml,...,a}n)

(since (x1,...,xy) is obtained by iteration of Fy.) By an €-formula we
mean a first oder formula containing only € as a non logical predicate. If
¢ = p(v1,...,vy) is any €-formula in which at most the distinct variables
(v1,...,v,) occur free, set:

to(u) = {(z1,...,20)|T € uN (u,€) = @[]}

(Note We follow the usual convention of suppressing the list of variables.)

(Note Recall our convention that ¥ € u means that z; e w fori =1,...,n.)
Then t, is rud. We claim:

Claim 3 t, is good for every €-formula ¢.

Proof:



2.2. RUDIMENTARY FUNCTIONS 53
(1) Tt holds for p =v; € v; (1 < i< j<n)
Proof: For i = 2,3 set:
F2(u,w) = w, FZmH(u,w) = Fi(u, F{" (u,w))
then F/"u is good for all m. For m > 1 we have:

El'(u,w) = {(x1,...,2m, 2)|T €EuNz € w}
{1, s 2)|E €U A (3, 2) € w0}

If j = n, then

to(u)={(z1,...,2m)|T € uNz; € 2}

= Fé_l(u, Fgl_’_l(u, Fr(u,u))).
Now let n > j. Noting that:
Fy(u™ w) = {(y, 2,21, ..., xm)|T € u A (y,2) € w},
we have:

to(u) = Fit(u, FI7 Y u, Fy(u™9)| Fr(u,u)))).

QED (1)
(2) It holds for ¢ = v; € v;.
Proof: t,(w) =0 =w\ w.
(3) If it holds for ¢ = p(v1,...,vy,), then for —¢p.
Proof:
top(w) = (0 \ tg(w)).
QED (3)
(4) If it holds for ¢, v, then for ¢ A, ¢ V 1b. (Hence for o — ¥, @ <>
by (3).)
Proof:

() = (1) U () = Ul (), b))}
toaw(w) = to(w) Nty (w), where z Ay = (x\ (z\ y)).

QED (4)
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(5) If it holds for ¢ = ¢(u,v1,...,v,), then for Aug, \V, ¢.
Proof:
t\/wp(w) = Fs(ty,t,); hence
75/\u<p(w) = tﬁVuﬂgo(w) by (3)

QED (5)
(6) It holds for ¢ = v; = v; (i,j < n).
Proof: Let ¢(vy,...,v,) = \2(2 € v; > 2 € v;). Then for (7) € UM
we have:

z) 6t¢(uUUu) T =,

since z;, z; C (vUJu). Hence

to(u) = u™ N ty(uU Uu)

QED (6)
(7) It holds for ¢ = v; € v; (i < j)
Proof:
vj € v; H\/u(u:vj/\uEUi).
We apply (6), (5) and (4). QED (7)

But then if p(vi,...,v,) = Qui,...Quy (U, V) is any formula in prenex
normal form, we apply (1), (2), (6), (7) and (3), (4) to see that t; is good.
But then t, is good by iterated applications of (5). QED (Claim 3)

In our application we shall use the function ¢, only for ¥ formulae ¢. We
shall make strong use of the following well known fact, which can be proven
by induction on n.

Fact Let ¢ = p(v1,...,vy) be a ¥y formula in which at most n quantifiers
occur. Let u be any set and let z1,..., 2, € u. Then V |= ¢[Z] <> Cp,(u) E

o[7].

Definition 2.2.9. Let f: V"™ — V be rud. f is verified iff there is a good
f*:V — V such that f"U™ C f*(U) for all sets u. We then say that f*
verifies f.

Claim 4 Every verified function is good.

Proof: Let f be verified by f*. Let ¢ be the ¥ formula: y = f(z1,...,zp).
For sufficient n we know that for any set u we have:

y = f(T) < (y,7) € tp(Cp(uU f*(u)))
for y, @ € uU f*(u).
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Define a good function F' by:
F(u) = (f*(u) ®u™) N t,(Ca(U U f*(u))).

Then F'(u) is the set of (f(Z),Z) such that ¥ € u. In particular, if u =
{z1,...,2,}, then:

R(F({F){(@®)) = (@)
and f(7) = UR(F({#), {(#)}). QED (Claim 4)

Thus it remains only to prove:
Claim 5 Every rud function is verified.
Proof: We proceed by induction on the defining schemata of f.
Case 1 f(¥) =u;
Take f*(u) =u=u\ (u\u).

Case 2 f(Z) =z \ z;
Let ¢ be the ¥y formula z € z \ y. For sufficient n we have:

zE:L‘\y(—)C’n(uUUu)):zex\y

for z,z,y € uU|Ju. But if z,y € u, then = \ y C |Ju. Hence:

(x,y,2) € tW(C'n|UUUu)) —zex\y

for all z,y € v and all z.
Hence:

F1u = {\ gl y € u} © Ftp(Culu 0| Ju)),u®).
QED (Case 2)

Case 3 f(Z) = {zs,2;}
Then f"u" = {{z,y}|z,y € u} = Ju®. QED (Case 3)

Case 4 (7) = g(h(D))
Let b} verify h; and g* verify g. Then f*(u) = ¢*(Uh}(u)) verifies f.

QED (Case 4)
Case 5 f(y, %) = Jg(z,&). Let g* verify g. Let ¢ = ¢(w,yZ) be the 3

zey
formula: \/z € y w € ¢g(z,%). For sufficient n we have:

Vzeyweglzd) e (w,y,3) € ty(Caluu| g ()
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for all w,y,Z € uUJg*(u).

Set F(u) = t,(Cr(uUUg*(w))). Then g(z,Z) C |Jg*(u) whenever
Yy, T € u and z € y. Hence

Fu)*(y, %) = | Jo(z, %)

zey

for y, & € U. Hence
Flumtt € Fy(F(u), u™).

QED (Theorem 2.2.15)

Combining Theorem 2.2.15 with Lemma 2.2.6 we get:

Corollary 2.2.16. Let Ay,..., A, C V. Then Fy,..., Fy together with the
functions a;(x) = x N A;(i = 1,...,n) form a basis for the functions which
are rudimentary in Aq,..., A,.

Let M = (|]M|,€,A1,...,An). 'Fps’ denotes the satisfaction relation for M
and ’):%’ denotes its restriction to X, formulae. We can make good use of
the basis theorem in proving:

Lemma 2.2.17. ):]EV}’ is uniformly X1 (M) over transitive rud closed M =
(IM]|,€,A1,..., Ap).

Proof: We shall prove it for the case n = 1, since the extension of our proof
to the general case is then obvious. We are then given: M = (M|, €, A).
By a wvariable evaluation we mean a function e which maps a finite set of
variables of the M-language into |M|. Let E be the set of such evaluations.
If e € E, we can extend it to an evaluation e* of all variables by setting:

« e(v) if v € dom(e)
¢ (U):{ () if not

Eur ple] then means that ¢ becomes true in M if each free variable v in ¢
is interpreted by e*(v).

We assume, of course, that the first order language of M has been "arithme-
tized" in a reasonable way — i.e. the syntactic objects such as formulae and
variables have been identified with elements of H,, in such a way that the
basic syntactic relations and operations becom recursive. (Without this the
assertion we are proving would not make sense.) In particular the set Vbl of
variables, the set F'ml of formulae, and the set F'mly of Yyp—formulae are all
recursive (i.e. Aj(H,)). We first note that every Xo(M) relation is rud, or
equivalently:
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(1)

Let o be 3g. Let vy, ..., v, be a sequence of distinct variables contain-
ing all variables occuring free in ¢. There is a function f uniformly
rud in A such that

Em ple] & f(e*(n),...e%(vy)) =1

foralle € E.

Proof: By induction on ¢. We leave the details to the reader.
QED (1)

The notion A—good is defined like "good" except that we now add the
function Fy(z,y) = x N A to our basis. By Corollary 2.2.16 we know
that every function rud in A is A-good. We now define in H, an
auxiliary term language whose terms represent the A-good function.
We first set: F(x,y) =: (i, (z,y)) for i =0,...,9: © = (10, z). The set
T'm of Terms is then the smallest set such that

e ¢ is a term whenever v € Vbl

e If t, are terms, then so is F(¢, ') for i =0,...,9.

Applying the methods of Chapter 1 to the admissible set H,, it follows
easily that the set T'm is recursive (i.e. Aj(H,)). Set

C(t) ~: The smallest set C such that the term ¢ € C and C' is closed
under subterms (i.e. Fi(s,s') € C — 5,8 € C).

Then C(t) € H, for t € T'm, and the function C(t) is recursive (hence
A1(H,)). Since Vbl is recursive, the function
Vbl(t) ~: {v e Vbl|o € C(t)} is recursive.

We note that:

Every recursive relation on H,, is uniformly ¥ (M).

Proof: It suffices to note that: H,, is uniformly ¥ (M), since

x € H, <—>\/f\/u\/ncp(f,u,n,a;)

where @ is the Xg formula: f is a function A w is transitive
A EWANfinsuNhz €. QED (2)

Given e € E we recursively define an evaluation (e(t)|t € T'm) by:

e(v) = e*(v) for v € Vbl
e(Fi(t,s)) = Fi(e(t), e(s)).

Then:
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(3) {(y,e,t)lec EANt € TmAy==e(t)} is uniformly ¥;(M).
Proof: Let e € E, t € Tm. Then y =&(t) can be expressed in M by:

\/g\/u\/v(u =C(t) Nv=Vbl(t) N p(y,e,u,v,y,t))

where ¢ is the ¥ formula:

(g is a function Adom(g) =uAAz€cvzecu

ANz € v((x € dom( YA g(E) =e(x))V
V(z ¢ dom(e) A g(z) = 0))

9 .
AN Nty s,i€u(t = Fi(s,s') —
i=0

— g(t) = Fi(g(s),y(s")

QED (3)

(4) Let f(x1,...,2,) be A—good. Let vy,...,v] be any sequence of distinct
variables. There is t € T'm such that

fle*(vi),...,e"(vy)) =€(t)

for all e € E.
Proof: By induction on the defining schemata of f. If f(Z) =
we take t = v;. If e*(v)) = €(s;) for e € E(i = 0,1), and f(f) =
Fi(go(%), g1(X)), we set t = F;(so,s1). Then
e(t) = Fi(e(so),e(s1)) = Fi(go(Z), 91(F)) = f(Z).
QED (4)
But then:
(5) Let ¢ be a ¥ formula. Thereist € T'm such that M = ¢le] <> e(t) =1
foralle € E.
Proof: Let vy,...,v, be a sequence of distinct variables containing all

variables which occur free in . Then
M = ple] <& M = gle*(v1),.. ., €"(vn)]
for all e € E. Set

DID= it

Then f is rudimentary, hence A—good. Let t € T'm such that

(#5) fle(v1), ..., e (vn)) = E(2).
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Then: M |= ¢le] +» e(t) = 1. QED (6)

(5) is, however, much more than an existence statement, since our
proofs are effective: Clearly we can effectively assign to each Y formula
¢ a sequence v(p) = (v1,...,v,) of distinct variables containing all
variables which occur free in ¢. But the proof that the f defined by
(%) is rud in fact implicity defines a rud definition D, such that D,
defines such an f = fp_ over any rud closed M = (M, €, A). The
proof that f is A—good is by induction on the defining schemata and
implicitly defines a term ¢ = T, which satisfies (**) over any rud closed
M. Thus our proofs implicitly describe an algorithm for the function
¢ + T,. Hence this function is recursive, hence uniformly ¥(M).
But then ¥ satisfaction can be defined over M by:

M = ¢le] < e(T,) = 1.
QED (Lemma 2.2.17)

Corollary 2.2.18. Let n > 1. ):%/[n is uniformly X,,(M) for transitive rud
closed structures M = (|M|, €, A1, ..., Ayn).

(We leave this to the reader.)

2.2.1 Condensation

The condensation lemma for rud closed sets U = (U, €) reads:

Lemma 2.2.19. Let U = (U, €) be transitive and rud closed. Let X <y, U.
Then there is an isomorphism 7 : U <~ X, where U is transitive and rud
closed. Moreover, w(f(Z)) = f(n(Z)) for all rud functions f.

Proof: X satisfies the extensionality axiom. Hence by Moztowski’s isomor-
phism theorem there is 7 : U +— X, where U is transitive. Now let f be
rud and z1,...,2, € U. Then there is y' € X such that ¢/ = f(7(Z)), since
X <y, U. Let w(y) =y'. Then y = f(Z), since the condition 'y = f(Z)’ is
Yo and 7 is ¥q—preserving. QED (Lemma 2.2.19)

The condensation lemma for rud closed M = (|M|, €, Aq,..., Ay,) is much

weaker, however. We state it for the case n = 1.

Lemma 2.2.20. Let M = (|M|, €, A) be transitive and rud closed. Let
X <s, M. There is an isomorphism 7 : M <— X, where M = (|M|, €, A)
is transitive and rud closed. Moreover:

(a) T(ANz) = AN7(x)
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(b) Let f berud in A. Let f be characterized by: f(%) = fo(Z, AN f1(Z)),
where fo, fi are rud. Set: f(Z) =: fo(Z, AN f1(F)). Then:

m(f(&)) = f(n(Z)).

The proof is left to the reader.

2.3 The J, hierarchy

We are now ready to introduce the alternative to Godel’s constructible hier-
archy which we had promised in §1. We index it by ordinals from the class
Lm of limit ordinals.

Definition 2.3.1.

Jw = Rud(0)
Ja+w = Rud(Jg) for f € Lm
Jy = U J, for X a limit point of Lm

Y<A
It can be shown that L = |JJ, and, indeed, that L, = J, for a great many
o
a (fr. ins. pr closed «). Note that J, = L, = H,,.

By §2 Corollary 2.2.14 we have:
P(Ja) N Jatw = Def(Jy),

which pinpoints the resemblance of the two hierarchies. However, we shall
not dwell further on the relationship of the two hierarchies, since we intend
to consequently employ the J-hierarchy in the rest of this book. As usual,
we shall often abuse notation by not distinguishing between J, and (J,, €).

Lemma 2.3.1. rn(J,) = OnnJ, = a.

Proof: By induction on a € Lm. For o = w it is trivial. Now let a = +w,
where § € Lm. Then § = OnnJg € Def(Jg) C J,. Hence g +n € J, for
n < w by rud closure. But rn(J,) < 8+ w = a since J, is the rud closure
of Jo U{Js}. Hence OnNJ, = a =rn(Jy).

If v is a limit point of Lm the conclusion is trivial. QED (Lemma 2.3.1)

To make our notation simpler, define

Definition 2.3.2. Lm* = the limit points of Lm.
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It is sometimes useful to break the passage from J, to Juyn into w many
steps. Any way of doing this will be rather arbitrary, but we can at least do
it in a uniform way. As a preliminary, we use the basis theorem (§2 Theorem
2.2.15) to prove:

Lemma 2.3.2. There is a rud function s : V. — V such that for all U:

(a) U C s(U)
(1) rud(U) = U s"(U)

nw

(c) If U is transitive, so is s(U).

Proof: Define rud functions G;(i = 0,1, 2, 3) by:

Gol( )

Gl(xayv Z) = (IL’,y,Z)

GQ(':I;’ Y, Z) = {33‘, (y7 Z>}

G3(f13,y, Z) ="y

Set:
9 3
s(U)y=Uvu|JF'v*ulJGYU?.

1=0 1=0

(a) is then immediate, (b) is immediate by the basis theorem. We prove (c).

Let a € s(U). We claim: a C s(U). There are 14 cases: a € U, a = F;(z,y)
for an i = 0,...,8, where z,y € U, and a = G;(z,y,2) where z,y,z € U
and i = 0,...,3. Each of the cases is quite straightforward. We give some
example cases:

e a=F(r,y) =zRy. If 2 € a, then 2 = (2, y') where 2’/ € z, ¢/ € y.
But then a/,y" € U by transitivity and z = Go(2/, ¢/, 2") € s(U).

o a=Fi(z,y) = {(w,z,v)|z € z A (u,v) € y}. If d/ = (w, z,v) € a, then
w, z,v € U by transitivity and o’ = G1(w, z,v) € s(U).

e a = Fg(x,y). If d’ € a, then @’ = 2*2 where z € y. Hence z € U by
transitivity and o' = G3(z, z,2) € s(U).

e a=Go(r,y,2) = {{z},{z,y}}. Then a C FJU? C s(U).

° a=Gi(z,y,2) = (z,y,2) = {{z},{z, (y,2)}}. Then {z} = Fo(z,z) €

s(U) and {z, (y,2)} = Ga(x,y, z) € s(U). QED (Lemma 2.3.2)

If we then set:
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Definition 2.3.3. S(U) = s(UU{U}) we get:
Corollary 2.3.3. S is a rud function such that

(a) UU{U} C S(U)
) U 5"(U) = Rud(V)

n<w

(c¢) If U is transitive, so is S(U).

We can then define:
Definition 2.3.4.

So=10

Sy+1=5(Sy)

Sy = U S, for limit A.
v<A

Obviously then: J, = S, for v € Lm. (It would be tempting to simply
define J, = S, for all ¥ € On. We avoid this, however, since it could lead to
confusion: At successors v the models S, do not have very nice properties.
Hence we retain the convention that whenever we write J, we mean « to be
a limit ordinal.)

Fach J, has ¥; knowledge of its own genesis:

Lemma 2.3.4. (S,|v < o) is uniformly ¥1(Ja).
Proof: y =5, <\ f(e(f) Ny = f(v)), where ¢(f) is the ¥y formula:

f is a function Adom(f) € OnAf(0) =0

ANE € dom(f)(§+1 € dom(f) = f(§+1) = S(f(£)))
AN € dom(f|(Ais alimit — f(N) = f"N).

Thus it suffices to show that the existence quantifier can be restricted to J,
—i.e.

Claim (S,|v < 1) € J, for 7 < a.

Case 1 o = w is trivial.

Case 2 a=f+4+w, § € Lm.

Then (S,|v < ) € Def(Jg) C J,. Hence Sg = |J S, € Jo. By rud
v<p
closure it follows that Sgi, € J, for n C w. Hence S [v € J, for

v<a. QED (Case 2)
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Case 3 o € Lm".
This case is trivial since if v < 8 € aNLm. Then S[v € Jg C J,.
QED (Lemma 2.3.4)

We now use our methods to show that each J, has a uniformly 3 (J,) well
ordering. We first prove:

Lemma 2.3.5. There is a rud function w : V. — V such that whenever r
is a well ordering of u, then w(u,r) is a well ordering of s(u) which end
extends r.

Proof: Let 75 be the rlexicographic ordering of u?:
(x,y)ro(z,w) < (zrzV (x = z A yrw)).
Let r3 be the r-lexicographic ordering of u3. Set:
Uy = U, U4 = F{’uZ fori=0,...,8, uj0+; = Gé’u?’ fori=0,...,3.
Define a well ordering w; of u; as follows: wg =r, For i =0,...,9 set

Twiry < Va,b € u(z = Fi(a) ANy = Fi(b)A
Aargb A N\ a' € u?(a'roa — x # Fi(d'))A
ANV € u?(V'rab — y # F;(V)))

For ¢ = 0,...,3 let wigy; have the same definitions with G; in place of F;
and 3,73 in place of u2, 7.

We then set:

w=w(w) = {(e) € s V (o Aoy ¢ Yu)v

V(z € Upeiun Ny & Uun))}

n<i

(where | up, = 0). QED (Lemma 2.3.5)
h<0

If r is a well ordering of u, then

re ={(x,y)(z,y) eErV(zeuny=u)}
is a well ordering of u U {u} which end extends r. Hence if we set:

Definition 2.3.5. W(u,r) =: w(uU {u},r,).

We have:
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Corollary 2.3.6. W is a rud function such that whenever r is a well order-
ing of u, then W(u,r) is a well ordering of S(u) which end extends r.

If we then set:

Definition 2.3.6.
<Sp= 0
<Su+1: W(SV? <Su)

<5, = U <g, for limit A,
v<A

it follows that <g, is a well ordering of S, which end extends <g, for all
v <a.

Definition 2.3.7. <,=<;,=:<g, for a € Lm.

Then <, is a well ordering of J, for o € Lm.
By a close imitation of the proof of Lemma 2.3.4 we get:

Lemma 2.3.7. (<g, |v < «) is uniformly X1(Jy).

Proof:
y=<s,¢ \F\ 9e(f) Ab(f,9) Ny = g(v))

where ¢ is as in the proof of Lemma 2.3.4 and ¢ is the ¥g formula:

g is a function A dom(g) = dom(f)
ANg(0=0ANAE € dom(g)|§+1 € dom(g) —

=9+ 1) = W(f(£),9(6)))
AN € dom(g) (Ais alimit = g(A) = Jg"N).

Just as before, we show that the existence quantifiers can be restricted to
Ja- QED (Lemma 2.3.7)
But then:

Corollary 2.3.8. <,= |J <g, is a well ordering of J, which is uniformly
v<a

¥1(Ja). Moreover <, end extends <, for v € Lm, v < a.

Corollary 2.3.9. u, is uniformly ¥1(Ja), where uq(z) ~ {z|z <, x}.

Proof:
Y = uq(x) < \/V(:U eSyNy={z€ 8,z <g, =})
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QED (Corollary 2.3.9)

Note We shall often write <, for <,. We also write <, or <j or <y, for

U <a- Then <, well orders L and is an end extension of <.
acOn

We obtain a particularly strong form of Gédel’s condensation lemma;

Lemma 2.3.10. Let X <x, Jo. Then there are o, m such that m : Jy <X,

Proof: By §2 Lemma 2.2.19 there is rud closed U such that U is transitive
and 7 :¢— X. Note that the condition

S(fiv) < f=(Selv < §)
is X, since:

S(f,v) (f is a function A
ANdom(f) =v A f(0)=0if 0 <vA
A§ € dom(f)(§+1 € dom(f) —
STE+1) = SE)).

Let @ = OnNU and let 7 < @. Let m(¥) = v. Then f = (S¢|l{ <v) € X
since X <yx, Jo. Let 7(f) = f. Then f = (S¢|¢ < v), since S(f,7). But
then Jy = |J S¢ C U. But since 7 is ¥; preserving we know that

¢<a

reU=\fveUS(f,v)NzeUf"v)
—>$€Ja.

QED (Lemma 2.3.10)

Corollary 2.3.11. Let 7 : Jg: Jg =%, Jo. Then:

(a) v < T m(v) <m(r) forv,7 <a.

(b) v <py < 7(x) <pn(y) for v,y € Ja.
Hence:

(c) v<m(v) forv<a.

(d) x <p w(x) for x € J5.

Proof: (a), (b) follow by the fact that < NJ2 and <y NJ2 =<, are uni-
formly ¥ (J,). Butif 7(v) < v, then v, w(v), 72(v), ... would form an infinite
decreasing sequence by (a). Hence (c) holds. Similarly for (d). QED
(Corollary 2.3.11)
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2.3.1 The J/-hierarchy

Given classes A1, ..., A, on can generalize the previous construction by form-
ing the constructible hierarchy (J&' "o € T) relativized to Ay, ..., A,.
We have this far dealt only with the case n = 0. We now develop the case
n = 1, since the generalization to n > 1 is then entirely straightforward.
(Moreover the case n = 1 is sufficient for most applications.)

Definition 2.3.8. Let A C V. (J2|a € Lm) is defined by:

Ji = <Ja[AL €,AN Ja[A]>

JoA] = Ruda(0) = H,
Ja4wlA] = Ruda(Jg) for f € Lm
I[A] = U J,[A] for A € Lm*

<A

Note AN J,[A] is treated as an unary predicate.
Thus every J2 is rud closed. We set
Definition 2.3.9.

L[A] = J[A] = ae%nJa [Al;

LA = JA = (L[A],€, AN LIA]).
Note that J,[0] = J, for all @ € Lm.
Repeating the proof of Lemma 1.1.1 we get:
Lemma 2.3.12. rn(J2) = OnnNJ2 = a.

We wish to break JA

e into w smaller steps, as we did with J,1,,. To this
end we define:

Definition 2.3.10. S4(u) = S(u) U {ANu}.

Corresponding to Corollary 2.3.3 we get:

Lemma 2.3.13. S4 is a function rud in A such that whenever u is transi-
tive, then:

(a) uU{u U{ANu} C S(u)
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(b) U (84)"(u) = Rud(u)

n<w

(c¢) S(u) is transitive.

Proof: (a) is immediate. (c) holds, since S(u) is transitive, a C S(u) and
ANu C u. (b) holds since S(u) D u is transitive and A Nu C u. But if

we set: U = w (S4)™(u), then U is rud closed and (U, ANU) is amenable.

QED (Lemma 2.3.13)

We then set:

Definition 2.3.11.
SA =0

Si = S4(S8)
S = U S; for limit A.

<A

We again have: J,[A] = S4 for a € Lm. A close imitation of the proof of
Lemma 2.3.4 gives:

Lemma 2.3.14. (S3|r < o) is uniformly $1(J2).

Proof: This is exactly as before except that in the formula ¢(f) we replace
S(f(v)) by SA(f(v)). But this is Xo(J2), since:
z € S u) < (x € Su) Ve =ANu),

hence:
y =S4(u) < Nz €yze S4u)
ANNzeSu)zeyAn\zeyz=ANu.

QED (Lemma 2.3.14)
We now show that J2 has a uniformly % (J2) well ordering, which we call
<£ or <J&4.
Set:

Definition 2.3.12.

WA (u, ) ={{z, y)l{z,y) € W (u, 1)V
(xeSu)ANy=ANu¢ S(u)}

If u is transitive and r well orders u, then W4 (u,r) is a well ordering of
S4(u) which end extends r.

We set:



68 CHAPTER 2. BASIC FINE STRUCTURE THEORY

Definition 2.3.13.
<i=10
<D= WSS, <)
<= U <7 for limit <.

<A

Then <7 is a well ordering of S7' which end extends <? for { <v. In
particular <Z' well orders J4 for a € T'. We also write: <J(,é::<§. We set:
<pa=<ga=<i= ) <4

v<0o0o

Just as before we get:

Lemma 2.3.15. (<2 |v < «) is uniformly ¥1(J2).

The proof is left to the reader. Just as before we get:
Lemma 2.3.16. <2 and f(u) = {z|z <2 u} are uniformly ¥1(J2).
Up until now almost everything we proved for the J, hierarchy could be

shown to hold for the J(f hierarchy. The condensation lemma, however, is
available only in a much weaker form:

Lemma 2.3.17. Let X <y, JA. Then there are @, m, A such that

T Jg s X,

Proof: By Lemma 2.2.19 there is (U, A) such that 7 : (U, A) «— X and

(U, A) is rud closed. As before, the condition

SAfov) e F= (S <€)

si ¥ in A. Now let 7 < @, m(V) = v. As before f = (5¢[{ <v) € X. Let

7(f = f. Then f = (Sg‘]f < 7), since SA4(f,7). Then J2 Cc | SEA cU.
{<a

U C J2 then follows as before. QED (Lemma 2.3.17)

A sometimes useful feature of the J4 hierarchy is:

Lemma 2.3.18. x € J& — TC(z) € J2.

(Hence (TC(c)|z € JAY is Ty (J2) since u = TC(x) is defined by:

w is transitive Ax C u A \v((v is transitive Ao C v) — u C v)
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Proof: By induction on «.

Case 1 a = w (trivial)

Case 2 a =+ w, [ € Lim.
Then every = € JZ has the form f(2) where z1,...,2, € Jg[A] U
{Js[A]} and f is rud in A. By Lemma 2.2.2 we have

Urx cJT1c(z) c JslAl
i=1
Hence TC(x) = Cp(x) UTC (Ui, TC(2), where (T'C(z)|z € Ja[A]) is
J é“fdeﬁnable, hence an element of JZ.

Case 3 « € Lm* (trivial). QED (Lemma 2.3.18)
Corollary 2.3.19. If o € Lm*, then (TC(x)|z € J2) is uniformly Ay(J2).

Proof: We have seen that it is IT; (J2). But TC' | J2 € J2 for all § € Lm Na.
Hence u = TC(x) is definable in JZ' by:

V f(f is a function A dom(f) is transitive Au = f(x)
A As € dom(f)f(z) = 2 UU f2)

QED (Corollary 2.3.19)

2.4 J—models

We can add further unary predicates to the structure Jf. We call the struc-
ture:
M = (JvAn By, Ba)

a J-model if it is amenable in the sense that = N B; € J2 whenever z € JZ
and i =1,...,m. The B; are again taken as unary predicates. The type of
M is (n,m). (Thus e.g. J, has type (0,0), J2 has type (1,0), and (J,, B)
has type (0,1).) By an abuse of notation we shall often fail to distinguish
between M and the associated structure:

—.

M = (J A, A,,... A By,...,By)
where A' = A4; N J,[A] (i=1,...,n).
We may for instance write X1 (M) for ¥1(M)orm: N =y, Mform: N —x,

M. (However, we cannot unambignously identify M with M, since e.g. for
M = (J2, B) we might have: M = J&P)
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In practice we shall usually deal with J models of type (1,1), (1,0), or (0, 0).
In any case, following the precedent in earlier section, when we prove general
theorem about J—models, we shall often display only the proof for type (1,1)
or (1,0), since the general case is then straightforward.

Definition 2.4.1. If M = <J§, B) is a J-model and 3 < a in Lm, we set:

M|B = (J§, BinJ&, ... BynJd).

In this section we consider 31 (M) definability over an arbitrary M = <J§ ,B).
If the context permits, we write simply ¥ instead of X1(M). We first list
some properties which follow by rud closure alone:

o ):%[1 is uniformly 31, by Corollary 2.2.18 (Note "Uniformly’ here means
that the 3 definition is the same for any two M having the same type.)

o If R(y,x1,...,2y) is a X relation, then so is \/ yR(y, x1, ..., x,) (since

VyVzP(yz, %) < \Vu\y,z € uP(y, 2, 7) where R(y, &) <+ \/ zP(y, 2, T)
and P is X).

By an n—ary 31 (M) function we mean a partial function on M™ which
is X1(M) as an n + l-ary relation.

e If R, R’ are n—ary X1 relations, then so are RN R/, RUR’. (Since e.g.

(VyP(y,7) N P'(y,T)) <
V oy (P(y, @) A P'(y', 7)).)

o If R(y1,...,ym) is an n—ary 3 relation and f;(¥) is an n—ary ¥; func-
tion for ¢ = 1,...,m, then so is the n—ary relation

R(f(@) <\ y,- - ym( N\ wi = £:(@) A R(Z)).
=1

o If g(y1,...,ym) is an m-ary ¥; function and f;(¥) is an n-ary X3

function for then h(Z) ~ g(f(%)) is an n—ary ¥ function. (Since
Z= h(f) < vyh---»ym( é\lyi

Avi = Fi@) Az = 9(i)))

Since f(x1,...,x,) = x; is X1 function, we have:
o If R(z1,...,2,) is X1 and 0 : n — m, then
P(Z1, ceey Zm) < R(Zo(1)7 PPN Zg(n))

18 21.
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o If f(x1,...,2,) is a 31 function and o : n — m, then the function:

g(21, -+ 2m) 2= f(2e(1)s - -+ 5 Zon)

in 21.

J-models have the further property that every binary 3; relation is uni-
formizable by a ¥; function. We define

Definition 2.4.2. A relation R(y, ) is uniformized by the function F(Z)
iff the following hold:

e \/yR(y, %) — F(Z) is defined
o If F'(Z) is defined, then R(F(Z),¥)

We shall, in fact, prove that M has a uniformly ¥ definable Skolem function.
We define:

Definition 2.4.3. h(i,z) is a 1-Solem function for M iff h is a X;(M)
partial map from w x M to M and, whenever R(y,x) is a 31 (M) relation,
there is i < w such that h; uniformizes R, where h;(z) ~ h(i, z).

Lemma 2.4.1. M has a X1 -Skolem function which is uniformly 31 (M).

Proof: \zfj is uniformly ¥;. Let (p;|i < w) be a recursive enumeration of
the X1 formulae in which at most the two variables vy, v1 occur free. Then
the relation:

) by
T(Za Y, Z) <_>’:]\/[1 ©i [yv I’]
is uniformly 1. But then for any > relation R there is ¢ < w such that

R(y,z) < T(i,y,x).
Since T is 31, it has the form:
\/ 2T (2,4, @)
where T" is ¥g. Writing <) for <§, we define:

y=h(i,z) <\ z((z,y) is the <p; —least
pair (z/,y') such that T"(2',i,y/, x).

Recalling that the function f(x) = {z|z <as z} is ¥1, we have:

y=h(i,z) < \/ 2\ u(T'(2,i,y,x)A
Au = {wlw <, (z,y)}A
/\/\<Z,ay/> S ’LLﬁT,(Z,’L',y,SU))
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QED 2.4.1

We call the function h defined above the canonical 31 Skolem function for M
and denote it by hjys. The existency of h implies that every (M) relation
is uniformizable by a (M) function:

Corollary 2.4.2. Let R(y,x1,...,2,) be ¥1. R is uniformizable by a ¥
function.

Proof: Let h; uniformize the binary relation

{w, )|\ 21 an(R(y, B) Az = (w1,...,20))}.
Then f(Z) ~: h;({(Z)) uniformizes R. QED

We say that a ¥;(M) function has a functionally absolute definition if it
has a 31 definition which defines a function over every J—model of the same

type.

Corollary 2.4.3. Every ¥X1(M) function g has functionally absolute defini-
tion.

Proof: Apply the construction in Corollary 2.4.2 to R(y,%) < y = g(Z).
Then f(z) ~: h;((Z)) is functionally absolute since h; is.
QED (Corollary 2.4.2)

Lemma 2.4.4. Every x € M is ¥1(M) in parameters from OnNM.

Proof: We must show: = = f(&1,...,&,) where fis Xy (M). If M = (J4, §>,
it obviously suffices to show it for the model M’ = JZ. For the sake of
simplicity we display the proof for JZ'. (i.e. M has type (1,0)). We proceed
by induction on a € T'.

Case 1 a = w.
Then J, = Rud()) and = f({0}) where f is rudimentary.

Case 2 a=f+w, € Lm.
Then z = f(zl,...,zn,Jg‘) where 21,...,2, € ng and f is rud in A.
(This is meant to include the case: n = 0 and z = f(Jg‘).) By the
induction hypothesis there are £ € 3 such that z; = gi(€) (i =1,...,n)
and g; is X1 (J BA) For each 4 pick a functionally absolute 3; definition
for g; and let g be X1(JZ) by the same definition. Then z; = gg(é')
since the condition is ¥1. Hence z = f(€, 8) = f(§(£, Jé‘) where f’ is
. QED (Case 2)



2.4. J-MODELS 73

Case 3 o € Lm"*.
Then x € J/g‘ for a 8 < a. Hence z = f(£) where f is El(JE‘). Pick
a functionally absolute ¥ definition of f and let f’ be ¥1(J4) by the
same definition. Then z = f/(€). QED (Lemma 2.4.4)

But being ¥ in parameters from OnNM is the same as being ¥ in a finite
subset of OnNM:

Lemma 2.4.5. Let © = f(£) where f is $1(M). Let a € OnNM be finite
such that &1,...,&, € a. Then x = g(a) for a X1(M) function g.

Proof: Set:

the i—th element of a in order
of size if a C On is finite

and card(a) > 1,

undefined if not.

ki(a) =

Then k; is X1 (M) since:

y=rki(a) >V fVn<w(f:neanNi,j<n(f(i) <fG)<i<j)
Aa C On Ay = f(1))

Thus = = f(ki, (a),. .., ki, (a)) where & = k;,(a) for I =1,...,n.
QED (Lemma 2.4.5)

We now show that for every J-model M there is a X,(M) partial map of
OnNM onto M. As a preliminary we prove:

Lemma 2.4.6. There is a partial ¥, (M) map of OnNM onto (OnNM)2,

Proof: Order the class of pairs On? by setting: (a, 3) <* (v, 6) iff
(max(a, ), @, ) is lexicographically less than (max(y,d),~,d). This order-
ing has the property that the collection of predecessors of any pair form a
set. Hence there is a function p : On — On? which enumerates the pairs in
order <*.

Claim 1 p[Onyy is X1(M).
Proof: If M = (Jf, §>, it suffices to prove it for J(‘;T. To simplify
notation, we assume: M = JZ for an A C M (i.e. M is of type (1,0).)

We know:
y=pW) < \/ fle(f) Ay = fv))
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where ¢ is the g formula:

f is a function A dom(f) € OnA

ANu€rng(f)VB,v € Cn(u)u = (B,7)A
ANv,7 € dom(f)(v <7< f(v) <* f(1))

AN werng(f) \p, & <max(u)((p, §) <" u— () €rng(f)).

Thus it suffices to show that the existence quantifier can be restricted
to J& — ie. that p[¢ € JA for ¢ < a. This follows by induction on a
in the usual way (cf. the proof of Lemma 2.3.14). QED (Claim 1)

We now proceed by induction on o = Onyy, considering three cases:

Case 1 p(a) = (0, ).
Then p[a maps a onto

{ulu <, (0,a)} = o?

and we are done, since p[a is £1(J2). (Note that w satisfies Case 1.)

Case 2 a =+ w,f € Lm and Case 1 fails.
There is a $1(J4) bijection of 3 onto a defined by:

f@n)=F+nforn<w
f@Cn+1)=nforn<w
flvy=viorw<v<p

Let g be a Zl(Jf?) partial map of 8 onto 82. Set ({y0,71)): = 7 for
i=0,1.

gi(v) = (9(»))i(i = 0,1).
Then f(v) ~ (fgo(v, fg1(v)) maps B onto o?. QED (Case 2)

Case 3 The above cases fail.
Then p(a) = (v, 7), where v, 7 < a. Let v € Lm such that max(v, 1) <
v < a. Let g be a partial X, (J2) map of v onto v2. Then g € M,p~!
is a partial map of v2 onto o; hence f = p~! o g is a partial map of

v onto a. Set: f((£,9)) ~ (f(£), f(9)) for £,d,v. Then fg is a partial
map of v onto a?. QED (Lemma 2.4.6)

We can now prove:

Lemma 2.4.7. There is a partial 3,(M) map of Onps onto M.



2.4. J-MODELS 6]

Proof: We again simplify things by taking M = J4. Let g be a partial map
of a onto o? which is ¥1(J4) in the parameters p € JZ'. Define "ordered
pairs" of ordinals < « by:

(v,7) =g~ ({n,7)).

We can then, for each n > 1, define "ordered n—tuples" by:

(v)=v,(v1,...,vn) = (v1, (V2 ..., 1)) (0 > 2).

We know by Lemma 2.4.4 that every y € JZ has the form: y = f(v1,...,vp)
where v1,...,v, < and f is $1(J2). Define a function f* by:

y=f*(1) > Vvi,...,vpn(t = (v1,...,vp)A
Ay = f(vi,...,vp)).
Then f* is 1(J2) in p and y € f*a. If we set: h*(i,z) ~ h(i, (z,p)),
then each binary relation which is ¥1(J4) in p is uniformized by one of the
functions hf(z) ~ h*(i,z). Hence y = h*(i,v) for some v < a. Hence
JA = h*(w x a). But, setting:

y=h(u) < \i,v(p=(i,v) Ay =h*(i,v))
we see that h is X1(J2) in p and y € h”a. Hence JA = h’a, where h is
1(J2) in p. QED (Lemma 2.4.7)

Corollary 2.4.8. Let x € M. There are f,y € J2 such that f maps v onto
x.

Proof: We again prove it for M = J2. If a = w it is trivial since JI = H,,.
If « € Lm* then z € Jé‘ for a f < a and there is f € J2 mapping £ onto
Jg‘ by Lemma 2.4.7. There remains only the case « = 3 + w where § is a
limit ordinal. By induction on n < w we prove:

Claim There is f € JZ mapping 3 onto S§+n. If n = 0 this follows by
Lemma 2.4.7.

Now let n =m + 1.
Let f: 8 =% 54, and define f' by f'(0) = S, f'(n+1) = f(n) for
n <w, f/(§) = f(€) for £ > w. Then f maps § onto U = S5, U{S3,}

and S5, = L8J F'U?u L3JG§’U3 u{AnsSE .}
=5 i=0
Set:
g9i = {(Fi(f"(€), £'(€)), (i, (&, ONIE, ¢ < B}
fori=0,...,8
g8+i+1 = {<Gz’f/(€)7 f/(C)hf/(u))’ <8 +i+ 1a <€a<7ﬂ>>’€7<7ﬂ < B}
fori=0,...,3

g1z = {<A N S§+m<13’ @>>}
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13

Then g = Jgi € J2 is a partial map of JE‘ onto S§+n and gh € J4 is a
i=0

partial map of 8 onto Sg‘. QED (Corollary 2.4.8)

Define the cardinal of x in M by:
Definition 2.4.4. T = 7 =: the least ~ such that some f € M maps v

onto x.

(Note this is a non standard definition of cardinal numbers. If M is e.g. pr
closed, we get that there is f € M bijecting T onto z.)

Definition 2.4.5. Let X C M. h(X) = hy(X) =: The set of all y € M
such that y = f(x1,...,2y), wherexy,..., 2, € X and f isa ¥1(M) function

Since X1 (M) functions are closed under composition, it follows easily that
Y = h(X) is closed under (M) functions.

By Corollary ?? we then have:

Lemma 2.4.9. Let Y = h(X). Then M|Y <x, M where

MY = (YA NY,....,A,nNY,B1NY,...,B,NY).

(Note We shall often ignore the distinction between Y and M|Y, writing
simply: Y <5, M.)

If fis a X;(M) function, there is ¢ < w such that h(i, (¥)) ~ f(Z). Hence:

Corollary 2.4.10. h(X) = J h'(w x X™).

n<w

There are many cases in which h(X) = h”(w x X), for instance:

Corollary 2.4.11. h({z}) = b (w x {z}).

Gédels pair function on ordinals is defined by:

Definition 2.4.6. < v,6 ==: p~!(< v, =), where p is the function defined
in the proof of Lemma 2.4.6.

We can then define Gddel n—tuples by iterating the pair function:

Definition 2.4.7. <~y ==:7;<71,..., YT === 71, <72, -, Y0 =+ (n >
2).
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Hence any X which is closed under Gédel pairs is closed under the tuple—
function. Imitating the proof of Lemma 2.4.7 we get:

Corollary 2.4.12. If Y C Onyy is closed under Gédel pairs, then:

(a) h(Y)=h"(wxY)

(b) h(Y U{p}) = h"(w x (Y x{p}) forp € M.
Proof: We display the proof of (b). Let y € h(Y U{p}). Then y =
f(vis- - sYn,p), where y1,...,7, € Y and f is 31(M).

Hence y = f*((d,p)) where 6 =< ~v1,...,7, > and

y=f"z) <V, m Ve =<7, s = DA
Ny = f(7,p))-

Hence y = h(i, (0, p)) for some i. QED (Corollary 2.4.12)
Similarly we of course get:

Corollary 2.4.13. IfY C M is closed under ordered pairs, then:

(a) W(Y)=h'(wxY)

(b) h(Y U{p}) = "(w x (Y x {p}) for p € M.

By Lemma 2.4.5 we easily get:
Corollary 2.4.14. Let Y C Onps. Then h(Y) = " (w x Py, (Y)).

In fact:

Corollary 2.4.15. Let A C P,(Onys) be directed (i.e. a,b € A — \/c €
AabCc). Let Y =JA. Then h(Y) = h"(w x A).

By the condensation lemma we get:

Lemma 2.4.16. Let 7 : M —x, M where M is a J-model and M is
transitive. Then M is a J-model.

Proof: M is amenable by ¥ preservation. But then it is a J-model by the
condensation lemma. QED (Lemma 2.4.16)

We can get a theorem in the other direction as well. We first define:
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Definition 2.4.8. Let M, M be transitive structures. o : M — M cofinally
iff o is a structural embedding of M into M and M = |Jo" M.

Then:

Lemma 2.4.17. If o : M —x, M cofinally. Then o is ¥1 preserving.

Proof: Let R(y, ) be Xo(M) and let R(y, Z) be Xo(M) by the same defini-
tion. We claim:

V yR(y, (@) = \/ yR(y, )

for x1,...,2, € M. To see this, let R(y,o(Z)). Then y € o(u) for a u € M.
Hence \/y € o(u)R(y,o(Z)), which is a Xy statement about o(u),o(Z).
Hence \/ y € uR(y, T). QED (Lemma 2.4.17)

Lemma 2.4.18. Let 0 : M —x, M cofinally, where M is a J-model. Then
M is a J-model.

Proof: Let e.g. M = (JA), M = (U, A, B).

a

Claim 1 U = JZ where a = Onyy.

Proof: y = S4 v is a ¥y condition, so o(S4 [v) = S o(v). But o
takes @ cofinally to o, so if € < o, & < o(v), then SA(SA fo(v))(€) €
Hence J2 ¢ U. Tosee U C J&, let x € U. Then z € o(u) where

u € JA Hence u C SA and = € J(SA) Sf(y) c JZ2. QED (Claim 1)

Claim 2 M is amenable.
Let x € S(f(y). Then 0(BNSA) = BOS;‘(V) and zNB = (BNSA) Nz €
U, since S4 is transitive. QED (Lemma 2.4.18)

Lemma 2.4.19. Let M, M be J-models. Then o : M —x, M cofinally iff
o: M —x, M and o takes Ong; to Onyy cofinally.

Proof: (—) is obvious. We prove (+<). The proof of 0(5’,‘,4) = SA(V) goes
through as before. Thus if x € M, we have z € Sg‘ for some . Let £ < o(v).
Then x € 52\, = o(S). QED (Lemma 2.4.19)
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2.5 The X; projectum

2.5.1 Acceptability

We begin by defining a class of J-models which we call acceptable. Every
Jo 1s acceptable, and we shall see later that there are many other naturally
occurring acceptable structures. Accepability says essentially that if some-
thing dramatic happens to § at some later stage v of the construction, then
v is, in fact, collapsed to S at that stage:

Definition 2.5.1. J§ is acceptable iff for all 5 < v < o in Lm we have:

(a) faC Bandac JA, \ JA thenv < Bin JA .

(b) If z € Jg and v is a 3; condition such that J;‘;w E= ¢[B,z] but
JA W pB,x], then U < B in J2

vtw:*

A J-model (JA, B) is acceptable iff JO‘? is acceptable.

Note ’Acceptability’ referred originally only to property (a). Property (b)
was discovered later and was called ’X; acceptability’.

In the following we shall always suppose M to be acceptable unless otherwise
stated. We recall that by Corollary 2.4.8 every x € M has a cardinal 7 = M
We call v a cardinal in M iff ¥ =7 (i.e. no smaller ordinal is mappable onto
~vin M).

Lemma 2.5.1. Let M = (JZ', B) be acceptable. Let v > w be a cardinal in
M. Then:

(a) v € Lm*
(b) J&t <z, J&

«

(c) xGJf%MﬁP(z)CJf.

Proof: We first prove (a). Suppose not. Then v = 4w, where § € Lm, 3 >
w. Then f € M maps 8 onto v where: f(2i) =14, f(2i+1)=8+1, f(§) =¢
for £ > w.

Contradiction! QED (a)

If (b) were false, there would be v such that v < v < «, and for some x € Jf
and some ¥ formula ¢ we have:

Tt E V), T E ).
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But then z € Jg‘ for some 8 <~ in Lm. Hence 7 <7 < .
Contradiction! QED (b)

To prove (c¢) suppose not. Then x is not finite. Let § = T in J,‘Y“. Then
B >w,8 € Lm by (a). Let f € J:;‘ map [ onto z. Let u C x such that
u ¢ Z,f Then v = f~1"u ¢ J. Let v >~ such that v € Ji'; \ Ji'. Then
v < T <LB

Contradiction! QED (Lemma 2.5.1)

Remark We have stated and proven this lemma for M of type (1,1), since
the extension to M of arbitrary type is self evident.

The most general form of GCH says that if P(z) exists and T > w, then

P(z) =7 (where o is the least cardinal > «).

As a corollary of Lemma 2.5.1 we have:

Corollary 2.5.2. Let M, be as above. Let a € M,a C J,’;‘. Then:

(a) <J$,a> models the axiom of subsets and GCH.
(b) If v is a successor cardinal in M, then <J§‘, a) models ZFC™.

(c) If v is a limit cardinal in M, then <J§4, a) models Zermelo set theory.

Proof: (a) follows easily from Lemma 2.5.1 (¢). (c) follows from (a) and rud
closure of J,‘;‘. We prove (b). We know that J,‘;‘ is rud closed and that the
axiom of choice holds in the strong form: Az \/ v\ f f maps v onto z. We
must prove the axiom of collection. Let R(x,y) be ZW(J:;‘) and let u € Jf
such that Az € u\/ yR(z,y).

Claim \/v <y Az € u\/y € JJ'R(z,y). Suppose not.

Let y = 87 in M. For each v < v there is a partial map f € M of 3 onto v.
But then f € J;‘ since f Cvxpe Jf. Set f, — the <ja — least such f.
For z € u set:

h(z) = the least p such that \/y € JfR(y,x).

Then sup h"u = 7 by our assumption. Define a partial map k on u x 3 by:
k(x,€) = fr(z)(&). Then k is onto 7. But k € M, since k is EI(J,’;‘). Clearly
uxfB=pFin M,soy<f<~vyin M.

Contradiction! QED (Corollary 2.5.2)
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Corollary 2.5.3. Let M,~ be as above. Then

J,‘;1 = Hy =: U{u € M|u is transitive N <~y in M}.

Proof: Let uw € M be transitive and u < « in M. It suffices to show that
uEJ:;‘. Let v=u<~vin M. Let f € M map v onto u. Set:

r={(&6) e V|f(€) € f(9)}.

Then r € JVA by Lemma 2.5.1 (c), since v? € JVA. Let 3 = U = the
least cardinal > v in M. then Jg‘ models ZFC™ and r,v € Jg‘. But then
f e Jg‘ C Jf, since f is defined by recursion on r : f(x) = f"r"{z} for
x € v. Hence u = rng(f) € J,‘;‘. QED (Corollary 2.5.3)

Lemma 2.5.4. If 7 : M —x, M and M is acceptable, then so is M.

Proof: M is a J-model by §4. Let e.g. M = J& M = Jg. Then M has a
counterexample — i.e. there are 7 < @, 8 < 7,a such that card(7) > 8 in
Jo+ and either @ C Band @ € J&,  \ J& orelsea € Jg‘, JZ 1 E ¢la, B] and
JA | —[a, B], where ¢ is X1. But then letting 7(8,7,a) = 3, v, a it follows
easily that 3,v,a is a counterexample in M.

Contradiction! QED (Lemma 2.5.4)

Lemma 2.5.5. If 7 : M —x, M cofinally and M is acceptable, then so is
M.

Proof: M is a J-model by §4. Let M = J4, M = JA.

Case 1 a=w.
Then M = M = J}, 7 = id.

Case 2 @ € Lm".
Then "M is acceptable’ is a II;(M) condition. But then o € Lm* and
M must satisfy the same II; condition.

Case 3 @ = +w,B € Lm.

Then « = 8+ w,B € Lm and 3 = 7(B). Then Jg‘ = W(J?) is

acceptable, so there can be no counterexample (J,v,a) € J 234~

We show that there can be no counterexample of the form (4, 3,a). Let
7 = card(f) in M. The statement card(f) <7 is X1(M). Hence card(5) <
v = 7(¥) in M. Hence there is no counterexample (4, 3,a) with 6 > ~.
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But since M is acceptable and ¥ < 3 is a cardinal in M, the following II;
statements hold in M by Lemma 2.5.1

A6 <FNaCdac A
NS <F Az € JAN yR(x,8) — y € J2)

where R is ¥o(M).

But then the corresponding statements hold in M. Hence (4, 5, a) cannot be
a counterexample for § < 7. QED (Lemma 2.5.5)

2.5.2 The projectum

We now come to a central concept of fine structure theory.

Definition 2.5.2. Let M be acceptable. The 31 -projectum of M (in sym-
bols pas) is the least p < Onyy, such that there is a X, (M) set a C p with
a¢ M.

Lemma 2.5.6. Let M = (J, B),p = ppr. Then

(a) If p € M, then p is cardinal in M.
(b) If D is 3,(M) and D C J;f‘, then <J;4,D) is amenable.
(c) If u € Jf, there is no X, (M) partial map of u onto J;;‘,

(d) p € Lim*

Proof:

(a) Suppose not. Then there are f € M, v < p such that f maps « onto p.
Let a C p be X, (M) such that a ¢ M. Set @ = f~'"a. Then a is (M)
and a C 7. Hence a € M. But then a = f”a € M by rud closure.

Contradiction! QED (a)

(b) Suppose not. Let u € J;f‘ such that D Nwu ¢ J;f‘. We first note:

Claim DnNu¢ M.
If p = « this is trivial, so let p < a. Then p is a cardinal by (b) and
by Lemma 2.5.1 we know that P(u) N M C J;;l. QED (Claim)

By Corollary 2.5.2 there is f € JpA mapping a v < p onto D Nwu. Then
d=f'"DnNu)is X;(M) and d C v < p. Hence d € M. Hence D Nu =
f"d € M by rud closure. QED (b)
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(c) Suppose not. Let f ba a counterexample. Set a = {x € u|x € dom(f) A
x ¢ f(z)}. Then ais X,(M), a C u € M. Hence a € J;;l by (b). Let

a= f(x). Then z € f(x) & x ¢ f(x).
Contradiction! QED (c)

(d) If not, then p = S +w where 8 € Lim. But then there is a ¥, (M) partial
map of 5 onto p, violating (c). QED (Lemma 2.5.6)

Remark This shows that we could have defined p to be least such that there
isa X (M) set a C J;‘ with a ¢ M.

Remark We have again stated and proven the theorem for the special case
M = (JZ, B), since the general case is then obvious. We shall continue
this practice for the rest of the book. A good parameter is a p € M which
witnesses that p = pps is the projectum — i.e. there is B C M which is
31(M) in p with BOH)' ¢ M. But by §3 any p € M has the form p = f(a)
where f is a ¥ (M) function and «a is a finite set of ordinals. Hence a is good
if p is. For technical reasons we shall restrict ourselves to good parameters
which ar finite sets of ordinals:

Definition 2.5.3. P = Py =: The set of p € [Ony/|<* which are good
parameters.

Lemma 2.5.7. Ifpe€ P, then p\ pp € P.

Proof: It suffices to show that if v = min(p) and v < p, then p’ = p\(v+1) €
P. Let B be X1(M) in p such that BN HY ¢ M. Let B(z) < B'(z,p)
where B’ is ¥1(M).

Set:
B*(z) < \/z\/y(:r = (z,v) A B'(z,p' U {v})).
Then B* N H, ¢ M, since otherwise

BnH,={z|{x,v) e BN H,} € M.
Contradiction! QED (Lemma 2.5.7)
For any p € [Ony,|<¥ we define the standard code TP determined by p as:
Definition 2.5.4.
T? = T, = {(6,9)] bour ile,pl} 0 Y}
where (p;]i < w) is a fixed recursive enumeration of the ¥;-fomulae.

Lemma 2.5.8. pec P+~ TP ¢ M.
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Proof:

(+-) TP =T N H) for a T which is $1(M) in p.
(—) Let B be ¥1(M) in p such that BN HZJ)M ¢ M. Then for some i:
B(z) <> (i,x) € TP

for x € H)'. Hence TP ¢ M. QED (Lemma 2.5.8)

A parameter p is very good if every element of M is 31 definable from

parameters in ppr U {p}. R is the set of very good parameters lying in
[Onps]<v.

Definition 2.5.5. R = Rj; =: the set of r € [Onp/]<¥ such that M =
haa (par UA{r}).

Note This is the same as saying M = hps(ppr UT), since
h(pUr) =h"(w x [pUr]®).
But pUr =pU(r\ p). Hence:

Lemma 2.5.9. Ifr € R, then r\ p € R. We also note:
Lemma 2.5.10. R C P.

Proof: Let r € R. We must find B C M such that B is ¥;(M) in r and
BNH) ¢ M. Set:

B = {(i,a)| \/ vy = hi, (2,19) A (i) & v}

If b= BNH) € M, then b = h(i,(z,r)) for some i. Then (i,z) € b
(i,z) ¢ D.
Contradiction! QED (Lemma 2.5.10)

However, R can be empty.

Lemma 2.5.11. There is a function h" uniformly ¥1(M) in r such that
whenever r € Ry, then M = h™" pyy.

Proof: Let x € M. Since z € h(p U {r}) there is an f which is X;(M)
n r such that x = f(&,...,&,). But p is closed under Godel pairs, so
x=f(<&,...,& =), where

2= (&) &\ el =< €= nx = f()).
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fis (M) in r. Hence 2 = h(i, ((€), 7)) for some i < w. Set
z=0"(8) = \[€\/i<w(d=(i,& A =h(i, ().
Then = = h"((i, (§))). QED (Lemma 2.5.11)

Lemma 2.5.11 explains why we called TP a code: If r € R, then T" gives com-
plete information about M. Thus the relation €= {(z,7)|h"(v) € h"(7)}
is rud in 77, since v € 7 < (i,(v,7)) € T" for some i < w. Similarly,
if M = (J2,B), then A; = {v|h"(v) € A;} and B} = {v|W"(v) € B;} are
similary rud in 7™ (as is, indeed, R’ whenever R is a relation which is X1 (M)
in p). Note, too, that if B C H;)W is X(M), then B is rud in T". However, if
p € PY\ R, then TP does not completely code M.

Definition 2.5.6. Let p € [Onp/]<%. Let M = <J§, B).

The reduct of M by p is defined to be
MP = (JA TP

PM’

Thus MP is an acceptable model which — if p € Rj; — incorporates complete
information about M.

The downward extension of embeddings lemma says:

Lemma 2.5.12. Let # : N —x, MP where N is a J-model and p €
[Onp]<v.

(a) There are unique M,p such that M is acceptable, p € Ryz, N = M.
(b) There is a unique @ O 7 such that 7@ : M —x, M and =(p) = p.
(c) #: M —x, M.

Proof: We first prove the existence claim. We then prove the uniqueness
claimed in (a) and (b).

Let e.g. M = (J, B), MP = (J4,T),N = (JAT). Set: p = supn"p, M =
MP|p = (Jg‘,f) where T = T'N Jg‘. Set X = rng(m), ¥ = hpy(X U {p}).
Then 7 : N —s, M cofinally by §4.

(1) YNM=X i
Proof: Let y € YN M. Since X is closed under ordered pairs, we have
y = f(z,p) where x € X and f is ¥1(M). Then
y=f(z,p) <=y eilly,),p)
& (i, (y,z)) €T,
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Since X <y, M, there is y € X such that (i,(y,z)) € T. Hence
y=f(z,p) € X. QED (1)
Now let @ : M&Y, where M is transitive. Clearly p € Y, so let
7(p) = p. Then:

(2) #: M —x, M, 7| N =x, 7#(p) = p.
But then:

(3) M = hy(NUA{p}).
Proof: Let y € M. Then 7(y) € Y = hy"(wz(Xx{p})), since X
is closed under ordered pairs. Hence 7(y) = has(i, (m(x),p)) for an
x € M. Hence y = hyz(i, (z,D). QED (3)

(4) 7= pyr _ _
Proof: It suffices to find a X1 (M) set b such that b C N and b ¢ M.

Set
b={{i,z) ewx N|Vy (y=hy(i,(z,p))
A, x) ¢ )}
If b € M, then b = hyz(i, (z,p)) for some z € N. Hence
(i,x) €b <> (i,x) ¢ b.
Contradiction! QED (4)
(5) T = {{i,z) € wx N| f=7 @ili, {z,p)]}-

Proof: T C wx N, since T C w x M. But for (i,z) € w x N we have:
(i,2) eT < (i,m(x))eT

© M E ¢il((2), p)]

© M = ¢il(z,p)] by (2)
QED (5)

(6) p=prar

Proof: By (4) we need only prove p < pz7. It suffices to show that if
b C N is X,(M), then <J§,b> is amenable. By (3) bis X;(M) in z,p

where z € N.
Hence —
b={z|M = ¢i[(z, ), P} =
= {z/(i,z,z) € T}
Hence b is rud in T where N = <J§, T) is amenable. QED (6)

S =

But then M = hy7(P U {p}) by (3) and the fact that h é( ) =
p

Hence
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(7) P € Ryr
By (6) we then conclude:

(8) N =",
This proves the existence assertions. We now prove the uniqueness
assertion of (a). Let M? = N where p € R,

We claim: M = M, p=

Since the Skolem function is uniformly ¥ there is a j < w such that

hoy (i, (2, ) € Ry (i (y, p) >
& M gjl(z,9),0) & (G, (z,y) €T
& hyr(i, (2,D)) € hyz(i, (y, D))
Similarly: B
 hyr(i, (2,p)) € A
B ¢ hyg(i (2.7) € B
where M = (JA B), M = <JaZ B). Then there is an isomorphism o :

M & M defined by o(h ( (x, }5>) ~ hyz(i, (z, )) for x € N. Clearly
o(p) = p. Hence o = id, M, M, p = p, since M, M are transitive.

We now prove (b). Let # D 7 such that # : M —yx, M and #(p) = p.
If x € N and hg;(i, (x,p)) is defined, it follows that:

(hz (i (2, D)) = haa (i, (w(2), p)) = 7(har (i, (x, )

Hence 7 = 7. QED (Lemma 2.5.12)

If we make the further assumption that p € Rj; we get a stronger result:

Lemma 2.5.13. Let M, N,M,mﬁﬁ,ﬁ be as above where p € Ry; and m :
N =5, MP for anl <w. Then®: M —yx, , M.

Proof: For [ = 0 it is proven, so let [ > 1 and let it hold at [. Let R be
Yp1(M) if Lis even and I1j,1 (M) if L is odd. Let R have the same definition
over M. Tt suffices to show:

R(T) +» R(7(¥)) for x1,...,2, € M.

But:
R(f) — Qlyl eM... Qlyl S MR/(g, f)

and
R(Z) & Quyr € M...Quy € MR (7, %)
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where Q1 ... Q) is a string of alternating quantifiers, R’ is 31 (M), and R is
31 (M) by the same definition. Set

D =: {(i,z) € w x J | ha(i, (x,p)) is defined}
D =: {{i,z) € w x JA|hy(i, (z,P)) is defined}.

Then D is £1(M) in p and D is X1(M) in p by the same definition. Then
D is rud in T}, and D is rud in Tpﬁ by the same definition, since for some
j < w we have:

2 €D (j,x) €Ty, v €D (j,x) € TY.

Define h on D
k((i,2)) = har (i, (2, p)); k((i,2)) = hyz(i, (2, D).
Set:
P(w,2) < (W,Z € D A R (k(W), k(%))
P(i,2) > (0,7 € D AR (k(@), k(2))
Then: as before, P is rud in T}, and D is rud in T2 by the same definition.
Now let x; = k(z;) for ¢ = 1,...,n. Then 7(x;) = k(n(2;)). But since 7 is
> —preserving, we have:
E(f) < Qrwy € D... Quuy € W(?ﬂ, 5)
& Quwi € D...Qu € DP(IE,E)
< R(7(7))

QED (Lemma 2.5.13)

2.5.3 Soundness and iterated projecta

The reduct of an acceptable structure is itself acceptable, so we can take
its reduct etc., yielding a sequence of reducts and nonincreasing projecta
(pyyIn < w). this is the classical method of doing fine structure theory,
which was used to analyse the constructible hierarchy, yielding such results
as the [J principles and the covering lemma. In this section we expound
the basic elements of this classical theory. As we shall see, however, it only
works well when our acceptable structures have a property called soundness.
In this book we shall often have to deal with unsound structures, and will,
therefore, take recourse to a further elaboration of fine structure theory,
which is developed in §2.6.

It is easily seen that:
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Lemma 2.5.14. Let p € Ry;. Let B be X,(M). Then BN Jg‘ is rud in
parameters over MP.

Proof: Let B be ¥ in r, where r = hs(4, (v,p)) and v < p. Then B is ¥;
in v, p. Let:

B(x) <> M E gi[(z,v),p]

where (p;]i < w) is our canonical enumeration of ¥; formulae. Then:
z € B (i, (z,v)) e TP
QED

It follows easily that:

Corollary 2.5.15. Let p,q € Ry Let D C Jf. Then D is X, (MP) iff it is
,(M9).

Assuming that Rj; # 0, there is then a uniquely defined second projectum
defined by:

Definition 2.5.7. P%w ~: ppe for p € Ryy.

We can then define:

R%, =: The set of a € [Onp/]<* such that

a € Ry and aNp € Rya )\ p.
If R?\/l # () we can define the second reduct:
M =: (Ma)“ﬁp2 for a € R%,.
But then we can define the third projectum.:
p® = paza for a € R3,.

Carrying this on, we get R%,, M™% for a € R}, and p"*1, aslong as R, # 0.
We shall call M weakly n—sound if R}, # (.

The formal definitions are as follows:

Definition 2.5.8. Let M = (J2, B) be acceptable.
By induction on n we define:

e The set R}, of very good n—parameters.
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o If R}, # (), we define the n—th projectum p7,.

e For all a € R}, the n-th reduct M™*.
We inductively verify:
* If D C Joh and a,b € R™, then D is X, (M™) iff it is 3, (M™?).

Case 1 n=0. Then RO =: [ODM]<w,p0 = On]V],MO’a =M.

Case 2 n=m+ 1. If R™ = (), then R" = () and p" is undefined. Now let
R™ 2 (). Since (*) holds at m, we can define

e p" =: ppym.a whenever a € R™.
e R™ =: the set of a € [@]<* such that a € R™ and a N p™ € Rym.a.

o M™® =: (M"™®*)%WPm for q € R™.

(Note It follows inductively that a \ p™ € R™ whenever a € R".)

We now verify (*). It suffices to prove the direction (—). We first note that
M™% has the form (J;ﬁl, T, where T is the restriction of a X;(M™*) set T"

to J;,‘}l. But then 7" is X, (M™") by the induction hypothesis. Hence T is
rudimentary in parameters over M™? = (M"™?)*"" by Lemma 2.5.14.

Hence, if D C J;}L is ¥, (M™®), it is also X, (M™P). QED

This concludes the definition and the verification of (*). Note that R}, =
R, pt = ply, and MY = M for a € Ryy.

We say that M is weakly n-sound iff R}, # 0. It is weakly sound iff it is
weakly n—sound for n < w. A stronger notion is that of full soundness:

Definition 2.5.9. M is n—sound (or fully n— sound) iff it is weakly n—sound
and for all i < n we have: If a € R?, then Pyjia = Rpjia.

Thus Ry = Puyr, Rpyjie = Pypie for a € Py oete. If M is n—sound we write
P, for RY,(i < n), since then: a € P« (a Np' € PPAanp' €T
for i < n).

]\/[i,ar‘lpi

There is an alternative, but equivalent, definition of soundness in terms of
standard parameters. in order to formulate this we first define:
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Definition 2.5.10. Let a,b € [On]<.

a < b<—>:\/,u(a\,u:b\u/\u6 b\ a).

Lemma 2.5.16. <, is a well ordering of [On]<¥.
Proof: It suffices to show that ever non empty A C [On]<“ has a unique
<, —minimal element. Suppose not. We derive a contradiction by defining
an infinite descending chain of ordinals (u;|i < w) with the properties:

o {10, pun} <sbforallbe A

e There is b € A such that b\ p, = {po, ..., tn}-
() ¢ A, since otherwise () would be the unique minimal element, so set:

po = min{max(b)|b € A}. Given p, we know that {po,...,un} ¢ A, since
it would otherwise be the <,—minimal element. Set:

fn+1 = min{max(b N u,)|b € ANb\ pn, = {0, fin}}-
QED (Lemma 2.5.16)

Definition 2.5.11. The first standard parameter pys is defined by:
py =: The <,—least element of Py;.
Lemma 2.5.17. Pyy = Py iff par € Ry

Proof: (—) is trivial. We prove («). Suppose not. Then there is r € P\ R.
Hence p <, r, where p = pps. Hence in M the statement:

(1) Vq <* rr= h(Z7 <V7 Q>)
holds for some ¢ < w, v < pps. Form M" and let M, 7,7 be sucht that
M = M", 7 € Ry, m: M —yx, M, and 7(F) = r. The statement (1)
then holds of 7 in M.

Let g € M, 7 = hyz(i,q) where ¢ <, 7. Set ¢ = w(q). Then r = h(i,q) in
M, where q <, r. Hence q € Py;. But then ¢ € Rj; by the minimality of r.
This impossible however, since

q en"M = hM(pMUT) #M

Contradiction! QED (Lemma 2.5.17)
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Definition 2.5.12. The n-th standard parameter Py is defined by induc-
tion on n as follows:

Case 1 n=0. p° = 0.

Case 2 n=m+1. If p™ € R™
p" =p" U Pypmpm

(Note that we always have: py N py = 0 by <,—minimality.)
If p* ¢ R™, then p" is undefined. By Lemma 2.5.17 it follows easily that:

Corollary 2.5.18. M is n—sound iff p’y; is defined and ph; € R},

This is the definition of soundness usually found in the literature.

Note that the sequences of projecta p™ will stabilize at some n, since it is
monotonly non increasing. If it stabilizes at n, we have R"™" = R"™ and
Pth = P for h < w.

By iterated application of Lemma 2.5.13 we get:

Lemma 2.5.19. Let a € R, and let 7 : N —x, M™®. Then there are M,a
and ™ DT such that M = M™, G € R, m: M =y, .., M and 7(a) = a.

We also have:

Lemma 2.5.20. Let a € RY};. There is an M —definable partial map of p"
onto M which is M —definable in the parameter a.

Proof: By induction on n. The case n = 0 is trivial. Now let n = m + 1.
Let f be a partial map of p™ onto M which is definable in a \ p™. Let
N = M™\P" b =anp™ Then N = hy(p" U {b}) = hn"(w x (p" x {b})).
Set:

g(=i,v =)~ hy(i, (v,b)) for v < p".

Then N = ¢"p". Hence M = fg"p", where fg is M—definable in a. QED

We have now developend the "classical" fine structure theory which was used
to analyze L. Its applicability to L is given by:

Lemma 2.5.21. Every J, is acceptable and sound.
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Unfortunately, in this book we shall sometimes have to deal with acceptable
structures which are not sound and can even fail to be weakly 1-sound. This
means that the structure is not coded by any of its reducts. How can we
deal with it? It can be claimed that the totality of reducts contains full
information about the structure, but this totality is a very unwieldy object.
In §2.6 we shall develop methods to "tame the wilderness".

We now turn to the proof of Lemma 2.5.21:

We first show:

(A) If J, is acceptable, then it is sound.

Proof: By induction on n we show that J, is n—sound. The case n = 0
is trivial. Now let n = m + 1. Let p = pY}. Let ¢ = pym» = The
<,—least ¢ € Pyym.p.

Claim qc R]\/]m,p.

Suppose not. Let X = hyms(p" Uq). Let T : N +— X, where N is

transitive. Then 7 : N —x, M™ and there are M,p, 7 D 7 such that
*,rnji

M™ =M™, pe R w: M—s, M, and 7(p) = p. Then M = Jg
for some @ < « by the condensation lemma for L.

Let A be 31(M™P) in p such that ANph, ¢ M™P Then ANph, ¢ M.
Let A be X1(N) in ¢ = 77 1(q) by the same definition. Then AN p" =
AN p"is Jy definable in g. Hence a = a, M = M, since otherwise
ANp™ € M. But then 7 = id and N = M"" = M™. But by definition:
N = hppm.p (p" U q). Hence ¢ € Rpm». QED

By induction on « we then prove:

(B) J, is acceptable.

Proof: The case o = w is trivial. The case o € Lim* is also trivial.
There remains the case a = f + w, where 8 is a limit ordinal. By the
induction hypothesis .J3 is acceptable, hence sound.

We first verify (a) in the definition of acceptability. Since Jg is accept-
able, it suffices to show that if v < 8 and a € J, \ Jg, then:

Claim 3 <~ in J,.

Suppose not. Since P(Jz) N J, = Def(J3), we show that that a is Jz—
definable in a parameter . We may assume w.l.o.g. that r € []<“.
We may also assume that a is X, (Jg) in r for sufficiently large n.
There is then, no partial map f € Def(Jg) mapping v onto 3. Hence,
by Lemma 2.5.20 we have v < p" = pf}ﬁ for all n < w.
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Pick n big enough that a is ¥,(Jg) is r. Set: p = p™ Ur (where
p" =) Thenp € R". Let M = Js, N = M"™. Let X =
hn (v U q) where ¢ = pN p™. Let @ : N <— X, where N is transitive.
Then ™ : N —yx, N and hence there are M, p, @ D 7 such that
M = N,pc Rz, M —s, M, 7(p) = p". Hence M = Jg for
B < B. Moreover, a is ¥,(M) in p. Hence S = 3, since otherwise
a € Def(Jz) C Jg. But then m = id, N = N = hy(yUgq). Hence

v > pn = ot
Contradiction! QED (Claim)

This proves (a). We now prove (b) in the definition of "acceptable". Most
of the proof will be a straightforward imitation of the proof of (a). Assume
Jo |E Y[z, 7], but Jg f= [z, v], where € J,, v < f and 9 is 3q. As before

we claim:

Claim B <~ in J,.

Suppose not. Then v < B. Let ¢v = V U ¢ where ¢ is ¥Xg. Let
Jo E ¢(y,x,7). Then y = f(2,2,7,Jg) where f is rud and z € Jg.
But

Ja ): Sp[f(zvxv'.W J,B)vxaﬁ]
reduces to:

Ja ): (,0,[2’,35,’)/, J,B]
where ¢’ is ¥y. But then

JsU{Js} = ¢z, 2,7, J5).

As we have seen in §2.3, this reduces to:

Js E x[z, 7,7

where x is a first order formula. Note that this reduction is uniform.
Hence if v < v < B, z € J, and J, E x[z,2,7], it follows that
Jy+w = Y[z, 7]. This means that J, E —x/[x,7] for v < v < 3, where
X = x(vo,v1,v,) and X' = Vugx. We know that v < pf}ﬁ for all n.
Choose n such that x" is ¥,. Let M = Jg, N : M™P when P = Py.
Let X = hy(y+1U{x}) and let 7 : N +~ X, where N is transitive.
As before, there are M,p,m D 7 such that M p= N, m: M -y, M,
and 7(p) = p. Let M = Jz. Then J5 = X'(z,7). Hence B = 8 and
7 =1id. Hence N = hy(y+ 1 U {x}). Hence v > p"*! = py.

Contradiction! QED (Lemma 2.5.21)
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2.6 X*—theory

There is an alternative to the Levy hierarchy of relations on an acceptable
structure M = (J2, B) which — at first sight — seems more natural. ¥, we
recall, consists of the relation on M which are Y definable in the predicats
of M. ¥; then consists of relations of the form \/ yR(y,Z) where R is Xo.

Call these levels Z(()O) and Zgo). Our next level in the new hierarchy, call it

Z((]l), consists of relations which are " in Zgo)" — i.e. 3p((M, A)) where
Ai,..., A, are 250). Egl) then consists of relations of the form \/ yR(y, Z)
where R is E(()l). Z(()Q) then consists of relations which are Y in Egl) ... etc.

By a ZZ(»”) relation we of course mean a relation of the form
R(7) < R'(Z,p),

where p1,...,pm € M and R’ is El(»n) (m). Tt is clear that there is natural
(n) (n)

class of ¥, ’—formulae such that R is a ¥,

—relation iff it is defined by a

Eén)fformula. Thus e.g. we can define the Zél) formula to be the smallest

set 2 of formulae such that

All primitive formulae are in X.

All Zgo) formulae are in X.

> is closed under the sentential operations V, —, <>, —.

If pis in X, then so are Av € up, \/ € up (where v # u).

By a Egl) formula we then mean a formula of the form \/ vy, where ¢ is E((Jl).

How does this hierarchy compare with the Levy hierarchy? If no projectum
drops, it turns out to be a useful refinement of the Levy hierarchy:

If pt; = a, then Eén) C Ayqq and Egn) = Yp+1. If, however, a projectum
drops, it trivializes and becomes useless. Suppose e.g. that M = J, and
p = p}w < . Then every M—definable relation becomes Z((]l)(M ). To see
this let R(Z) be defined by the formula ¢(¥), which we may suppose to be
in prenex normal form:

@(17) - Qlul .. Qmumgol(rl—}: ﬁ)a
where ¢’ is quantifier free (hence ¥g). Then:

R(Z) <> Qiyn € M ... QuYm € MR,(f, )
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where R’ is 3. By soundness we know that there is a X, (M) partial map f
of p onto M. But then:

—

R(Z) +» Q1&¢ € dom(f) ... Qmém € dom(f)R'(Z, f(£)).
Since f is ¥, the relation R/(Z, f(€)) is ;. But dom(f) is &, and dom(f) C
p, hence by induction on m:

—

R(Z) > Q1&1 € p... Qmém € pR"(Z,€),

where R” is a sentential combination of ¥; relations. Hence R’ is ;él)(M)
and so is R.

The problem is that, in passing from Ego) to Eél) our variables continued to
range over the whole of M, despite the fact that M had grown "soft" with
respect to X, sets. Thus we were able to reduce unbounded quantification
over M to quantification bounded by p, which lies in the "soft" part of M. in
section 2.5 we acknowledged softness by reducing to the part H = H [])V[ which
remained "hard" wrt X; sets. We then formed a reduct MP containing just
the sets in H. If M is sound, we can choose p such that MP contains complete
information about M. In the general case, however, this may not be possible.
It can happen that every reduct entails a loss of information. Thus we want
to hold on to the original structure M. In passing to Z[()l), however, we want
to restrict our variables to H. We resolve this conundrum by introducing
new varibles which range only over H. We call these variables of Type 1,

the old ones being of Type 0. Using u”,v"(h = 0,1) as metavariables for
)

variables of Type h, we can then reformulate the definition of Z(()l formula,

replacing the last clause by:

o If ¢ is in X, then so are Ao’ € uly, \/v' € uly where i = v,1 and
vl # ul.

A Egl) formula is then a formula of the form \/v'y, where ¢ is 261). We

call AC M a Zgl) set if it is definable in parameters by a Egl) formula. The
second projectum p® is then the least p such that p N B ¢ M for some zgl)

set B. We then introduce type 2 variables v, u?, ... ranging over |J;)42\ (|J§‘|

being the set of elements of the structure Jf, where e.g. M = (J4, B).)
Proceeding in this way, we arrive at a many sorted language with variables
of type n for each n < w. The resulting hierarchy of 2271) formulae (h =0,1)
offers a much finer analysis of M—definabilty than was possible with the Levy
hierarchy alone. This analysis is known as ¥* theory. In this section we shall

develop X* theory systematically and ab ovo.
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Before beginning, however, we address a remark to the reader: Most people
react negatively on their first encounter with ¥* theory. The introduction
of a many sorted language seems awkward and cumbersome. It is especially
annoying that the variable domains diminish as the types increase. The
author confesses to having felt these doubts himself. After developing 3*—
theory and making its first applictions, we spent a couple of months trying
vainly to redo the proofs without it. The result was messier proofs and a
pronounced loss of perspicuity. It has, in fact, been our consistent experience
that X* theory facilitates the fine structural analysis which lies at the heart
of inner model theory. We therefore urge the reader to bear with us.

Definition 2.6.1. Let M = <J“Y, B) be acceptable.

(e
The ¥* M -language L* = 1L}, has

e a binary predicate €
e unary predicates Ay, ..., Ap, By, ..., By,
e variables Ug(i,j <w)
Definition 2.6.2. By induction on n < w we define sets E;ln)(h =0,1) of

formulae

Z((]”) = the smallest set of formulae such that

all primitive formulae are in 3.

sy us™ % for m < n.

> is closed under sentential operations A, V, —, <>, —.

If  isin ¥,5 < n, and v/ # u™, then Av/ € u"p, \/v/ € u"p are in
>

We then set:
Zg") =: The set of formulae \/ v"p, where ¢ € E(()").
We also generalize the last part of this definition by setting:

Definition 2.6.3. Let n < w, 1 <h < w. Z,({L) is the set of formulae

\/of A\ s ... Quie,

where ¢ is E((]n) (and @ is \/ if h is odd and A if h is even).
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We now turn to the interpretation of the formualae in M.
Definition 2.6.4. Let Fml™ be the set of formulae in which only variables
of type < n occur.

By recursion on n we define:

e The n-th projectum p"p,.
e The n-th variable domain H" = H},.

e The satisfaction relation =" for formulae in Fml".

=" is defined by interpreting variables of type i as ranging over H* for i < n.
We set: p° = a, HO = |M| = |J4|, when M = (JA, B).

Now let p™, H™ be given (hence =" is given). Call aset D € H" a Zgn) set.

if it is definable from parameters by a Zgn) formula :
Dz < M E" ¢[z,a1,...,ap),

where ¢ = @(v™,u",... uim) is Egn). p" 1 is then the least p such that
there is a Zgn) set D C p with D ¢ M. We then set:
= |4,

This then defines ="*1.

It is obvious that =° is contained in =/ for i < j, so we can define the full
>* satisfaction relation for M by:

—=U k"

Satisfaction is defined in the usual way. We employ v’, u’, w® etc. as metavari-
ables for variables of type i. We also employ a2ty 2" etc. as metavariables

for elements of H'. We call v{},...,vi» a good sequence for the formula  iff
it is a sequence of distinct variables containing all the variables which occur
free in . If vi*, ..., vl is good we write:

= el i \ L ]
to mean that ¢ becomes true if UZ" is interpreted by x;l"(h =3s,...,n). We
shall follow normal usage in suppressing the sequence vi',..., vl writing
only:

=3 go[:rlf, ... ,ﬂ:if]
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(However, it is often important for our understanding to retain the upper

indices i1,...,in.) We often write ¢ = ¢(v{',...,v")) to indicate that
these are the suppressed variables. ¢ (together with (vil, ..., vin) defines a
relation: ' ‘

Rz, ...,z0) <=M ool ..., xr].

Since we are using a many sorted language, however, we must also employ
many sorted relations.

The number of argument places of an ordinary one sorted relation is often
called its "arity". In the case of a many sorted relation, however, we must
know not only the number of argument places, but also the type of each
argument place. We refer to this information as its "arity". Thus the arity
of the above relation is not n but (i1, ...,4,). An ordinary 1-sorted relation
is usually identified with its field. We shall identify a many sorted relation
with the pair consisting of its field and its arity:

Definition 2.6.5. A many sorted relation R on M is a pair (|R|,r) such
that for some n:

(a) |R[ C M"
(b) r={(r1,...,mn) where r; < w

(¢) R(x1,...,xp) > x; CH" fori=1,...,n.

|R| is called the field of R and r is called the arity of R.

In practice we adopt a rough and ready notation, writing R(x’f, .., xin) to
indicate that R is a many sorted relation of arity (i1, ..., ).

(Note Let L. = LLy; be the ordinary first order language of M (i.e. it has
only variables of type 0). Since H" € M or H™ = M for all n < w, it follows
that every L*-definable many sorted relation R(R(z%,...,z%) has a field
which is L-definable in parameters from M.)

(Note If R is a relation of arity (i,...,iy), then its complement is ' \ R,
where: '
I'={(x1,...,zp)|zp € H" for h=1,...,n},

the arity remaining unchanged.)

Definition 2.6.6. R(z!,..., 2m)is a ZE:L)(M) relation iff it is defined by a
Egln) formula. R is Egn)(M) in the parameters p1, ..., py iff R(Z) <> R'(Z,p),
where R’ is Z;Ln)(M). R is a Elgn)(M) relation iff it is E;Ln)(M) in some
parameters.
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It is easily checked that:

Lemma 2.6.1.

o If R(y".7) is B\, 50 is \/ y"R(y". )

o If R(¥), P(Z) are Zgn), then so are R(Z) vV P(¥), R(Z) A P(Z).

Moreover, if R(xéo, .. ,mi,’?__ll) is Egn), so is any relation R’(ygo, .. 7yf,'r__f) ob-

tained from R by permutation of arguments, insertion of dummy arguments
and fusion of arguments having the same type — i.e.

1 I — Jo Jo(m—
R’y 1)« RO Y1)

where o : m — r such that j,) =i for [ <m.
Using this we get the analogue of Lemma 2.5.6

Lemma 2.6.2. Let M = (JZ', B) be acceptable. Let p= p", H = H". Then

(a) If p € M, then p is a cardinal in M. (Hence H = Héw)

(b) If D is ;gn)(M) and D C H, then (H, D) is amenable.

(¢) If u € H, there is no Zgn)(M) partial map of u onto H.

(d) p€ Lm* if n > 0.
Proof: By induction on n. The induction step is a virtual repetition of the
proof of Lemma 2.5.6.

Definition 2.6.7. Let R(wlf, ...,xim) be a many sorted relation. By an
n-specialization of R we mean a relation R(z{',...,z%) such that

o y>qforl=1,...,m
° jl:il ifl<n
o If 21,..., 2, are such that z; € H7 for | = 1,...,m, then:

R(Z) ¢ R'(2).

Given a formula ¢ in which all bound quantifiers are of type < n, we can
easily devise a formula ¢’ which defines a specialization of the relation defined
by ¢:
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Fact Let ¢ = o(vl', ..., vl ) be a formula in which all bound variables are
of type < n. Let u{l, ey W be a sequence of district variables such that
Ji = i and j; = 4 if 4 < n(l =1,...,m). Suppose that ¢’ = ¢/() is

obtained by replacing each free occurence of vll by a free occurence of ull for
l=1,...,m. Then for all z1,...,x,, such that z; € H for [ =1,...,m we

have:

Faur o(0)[3] < ¢ (@) [2].
The proof is by induction on ¢. We leave it to the reader. Using this, we
get:

Lemma 2.6.3. Let R(z'!,... xim) be El(n). Then every n—specialization of

R s El(n),

Proof: R’(acl1 ..., 2im) be an n-spezialization. Let R be defined by (vl ... vim).
Suppose (u{l, .. v%lb“) is a sequence of distinct variables which are new —

i.e. none of them occur free or bound in ¢. Let ¢’ be obtained by replacmg

every free occurence of vll by u{l(l =1,...,m). Then ¢ (u1 s U de-

fines R’ by the above fact. QED (Lemma

2.6.3)

Corollary 2.6.4. Let R be Z(ln) in the parameter p. Then every n—spezialization
) .
of R is X" in p.

Lemma 2.6.5. Let R (z]',... ap) be E( ). Then R is an n-specialization
of a El relation R(acl ,...,:c“n) such that iy <n forl=1,...,m.

m

m
be a sequence of distinct new variables, where i = min(n,j;) for [ =

1,...,m. Replace each free occurence of u” by v for I =1,...,m to get

Proof: Let R’ be defined by ¢ (u1 Ve ,v,];lm), when ¢’ is Egn). Let vi", L

o(ul, ..., vim). Let R be defined by ¢. Then R'is a spec1ahzatlon of R by
the above fact. QED (Lemma 2.6.5)

Corollary 2.6.6. Let R’(atl ,...,:UZ,T) be Zgn) in p. Then R’ is a spe-
cialization of a relation R(w1 s, @imY) which is Zgn) in p with iy < n for
l=1...,m

(m)

Every ¥ formula can appear as a "primitive" component of a
formula. We utilize this fact in proving:

Egm—s—l)

Lemma 2.6.7. Letn = m+1. LetQj(]1,...,z;fpj,xil,...,xi1’) beE&m)(j:
1,...,7). ‘

Set: Qi@ = {(Z])|Q;(Z, )}
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Set: Hf =: <Hn, Ql,i"; e 7Qr,f>'
Let o = @(v1,...,vq) be X in the language of Hz. Then

{(@, )| Hz = o[z} is 3.
Proof: We first prove it for [ = 0, showing by induction on ¢ that the
conclusion holds for any sequence vy, ..., v; of variables which is good for .
We describe some typical cases of the induction.
Case 1 ¢ is primitive.

Let e.g. ¢ = Qj(vnys - - -, vp,, ), Where Qj is the predicate for Q;z. Then
(m)

Hjz |= p[2"] is equivalent to: Q;(x}, ,...,x} ), whichis X;™ (hence
Pj
E(()n)). QED (Case 1)

Case 2 ¢ arises from a sentential operation.
Let e.g. ¢ = (po A p1). Then Hz = p[2"] is equivalent to:

Hz = @o[Z"] A Hz = ¢1[2"]
which, by the induction hypothesis is E(()n). QED (Case 2)

Case 3 ¢ arises from a quantification.
Let e.g. ¢ = Aw € v;U. By bound relettering we can assume w.l.0.g.
that w is not among vy, ...,v,. We apply the induction hypothesis to
U(w,vy,...,vp). Then Hg = ¢[2"] is equivalent to:

/\z € xlHz = Vw, "

which is E[()n) by the induction hypothesis. QED (Case 3)

This proves the case [ = 0. We then prove it for [ > 0 by induction on [,
essentially repeating the proof in case 3. QED (Lemma 2.6.7)

Note It is clear from the proof that the set {(Z", )| Hz = ¢[Z™]} is uniformly

Zl(n) — i.e. its defining formula x depends only on ¢ and the defining formula
U, for Q;(i = 1,...,p). In fact, the proof implicitly describes an algorithm
for the function ¢, ¥q,..., ¥, — x.

We can invert the argument of Lemma 2.6.7 to get a weak converse:

Lemma 2.6.8. Letn=m+1. Let R(f",xzf, . ,xfj’) be El(n) where i <m
forl=1,...,g9. Then there are Egn) relations Q;(Z]',Z)(i =1,...,p) and a
3 formula ¢ such that

R(T", T) < Hy |= ¢[T"],
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where Hg is defined as above.

(Note This is weaker, since we now require i; < m.)
Proof: We first prove it for [ = 0. By induction on x we prove:

Claim Let y be E[(]"). Let o™, vil, e ,vff be good for x, where i1, ...,i; < m.
Let x (7", V) define the relation R(2™, ). Then the conclusion of Lemma 2.6.8
holds for this R (with [ = 0).

Case 1  is (™. '
Let x (2", %) define Q(z",Z). Then R(Z", %) <> Hz = QU"[Z"].
QED (Case 1)

Case 2 y arises from a sentential operation.
Let e.g. x = (U A V). Appliyng the induction hypothesis we get
Qi(z?,Z)(i =1,...,p) and ¢ such that
M = W[E", 7] < Hz |= o[7"]
where Hy = (H", Q1z, . .., Qpz). Similarly we get Q(¢7",Z)(t =1,...,¢)
and ¢’
M E V" o By E o).
Let Q; be the predicate for Q;z in the language of Hz. Let Q; be the

predicate for Q' in the language of HZ. Assume w.l.0.q. that Q; # Q;
for all ¢, 5. Putting the two languages together we get a language for

r=(H",QzQ%).
Clearly:
M| (x ANX)[E", 3] < H; = (9 A @')[E"]:
QED (Case 2)

Case 3 y arises from the application of a bounded quantifier.
Leteg. x = Aw™ € vjnx’. By bound relettering we can assume w.l.0.g.
that w" is not among ¢™. Then w"¢™, v is a good sequence for ' and
by the induction hypothesis we have for x' = x/(w™, 0", 7):

M = X[, 7", 7] < Hz = p[2", 7", @]
But then:
M Ex[@", 7] < A" €afM X", 7", 7]
[

« Hz = ANw € vjp[d"].
QED (Lemma 2.6.8)
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Note Our proof again establishes uniformity. In fact, if x is the El(n)f

definition of R, the proof implicitely describes an algorithm for the function
X’—>(P,\I/1,---,\I/p
where ¥, is a ng) definition of @;.

Remark Lemma 2.6.7 and 2.6.8 taken together give an inductive definition
of "Z;n) relation" which avoids the many sorted language. It would, however,
be difficult to work directly from this definition.

By a function of arity (i1, ... ,i,) to HY we mean a relation F(y/, x% ... z)
such that for all 1, ...,z there is at most one such y’. If this y exists, we

)

denote it by F(z%,...,z'). Of particular interest are the Egi functions to

H

Lemma 2.6.9. R(y", %) be a Egn) relation. Then R has a Eg") uniformizing
function F(Z).

Proof: We can assume w.l.0.g that the arguments of R are all of type < n.
(Otherwise let R be a specialization of R/, where the arguments of R’ are of
type < n. Let F’ uniformize R’. Then the appropriate specialization F of
F’ uniformizes R.)

Case 1l n=0.
Set:

F(Z) ~: y where (z,y) is <js —least such that R/(z,y, 7).

By section 2.3 we know that ups(x) is 31, where ups(x) = {yly <ar x}.
Thus for sufficient r we have:

y= F(@) & V(R (29, DA
Aw € U]W(<Za y>) /\ Zl? y, € C?"(w)
(w={(z",y) - -R(Z, v, %)),
which is uniformly ¥;(M).

Case 2 n>0. Let n=m+ 1.
Rearranging the arguments of R if necessary, we can assume that R
has the form R(y", 2", ), where the & are of type < m. Then there

are QZ(E'” fn7f>(2 =1,... ,p) such that Q; is Egm) and

7

R(ynvfn7f) < Hz ): Sp[yn’fn]’
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where ¢ is ¥; and

Hf - <Hn7Qlf7 .. 7an>

If e.g. M = (J4, B), we can assume w.l.0.g. that Q1(z", Z) < A(z").
Then <pyz, ugz are uniformly Y1 (Hz) and by the argument of Case 1
there is a 31 formula ¢’ such that F' uniformies R where

QED (2.6.9)

Note The proof shows that F(Z) is uniformly Egn) — i.e. its Z(ln) definition
depends only on the EYL) definition of R(y", ¥), regardless of M.

Note It is clear from the proof that the Eg") definition of F'is functionally
absolute — i.e. it defines a function over every acceptable M of the same
type. Thus:

Corollary 2.6.10. Every Egn) function F(Z) to H" has a functionally ab-
solute Egn) definition.

Note The Zgn) functions are closed under permutation of arguments, inser-
tion of dummy arguments, and fusion of arguments of same type. Thus if
F(zy,...xl) is Zgn), sois F'(y]',...,yh") where
j im\ ~o Jo ) Jo(n
Fl(yl', ... ylm) ~ F(yo(% . ..,yg(;f)
and o : n — m such that j,) = ¢ for [ <n.

If R(x{l, e ,a:i;”) is a relation and F;(Z) is a function to H’i fori=1,...,n,
we sometimes use the abbreviation:

R(F(2)) < \[ 2], .xg;P(/\ 2 = Fy(Z) A R(Z)).

Note that R(F(Z)) is then false if some F;(Z) does not exist. Egn) relations
)

are not, in general, closed under substitution of Zgn
get:

functions, but we do

Lemma 2.6.11. Let R(az{l, R {L‘%p) be Egn) such that j; <n fori=1,...,p.
Let F;(Z) be a Egji) map to H¥ for i = 1,...,p. Then R(F(%)) is Egn)
(uniformly in the Zgn) definitions of R, F1, ..., Fg)
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Before proving Lemma 2.6.11 we show that it has the following corollary:

Corollary 2.6.12. Let R(f,y{l,...,yip) be Egn) where j; < n for i =
1,...,p. Let Fi(%) be a Zgji) map to Hi fori=1,...,p. Then R(Z, F(%))
is (uniformly) Egn).

Proof: We can assume w.l.0.g. that each of & has type < n, since otherwise
R is a specialization of an R’ with this property. But then R(Z, F(z)) is
a specialization of R'(Z, F(z)). Let & = 2, .. .,:1:2" with h; < n for i =
1,...,q. Fort=1,...,p set:

Fori=1,...,q set:

QED (Corollary 2.6.12)

We now prove Lemma 2.6.11 by induction on n.

Case 1 n=0.
The conclusion is immediate by the definition of R(F(Z)):

p
R(F(2)) + \[ 2% ...20( )\ 2} = Fi(?) A R(Z)).
=1

Case 2 n=m+ 1.
Then Lemma 2.6.11 holds at m and it is clear from the above proof
that Corollary 2.6.12 does, too.

Rearranging the arguments of R if necessary, we can bring R into the form:
R(i"ﬂa:?,...wff) where [; <mfori=1,...,q.
We first show:
Claim R(7", F(2)) is 2.
Proof: Let Q;(Z}", %) be Egm) (¢=1,...,r) such that

R(z",T) < Hz |= p[7"]
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where ¢ is X1 and:

Set:

If xi’ = F(2) for i = 1,...,q, then Q;(z*,2) +> Q:;(z", %) and Hz =
Hz. Hence:

If, on the other hand, F(Z) does not exist for some i, then R(Z", F(2))
is false. Hence:

R, F(2)) (AL, V=l = Fi(2)

NH z = [2"]).
But /\ \/x ( = Fi(?)) is Zén), so the result follows by applying
Lemma 2.6.7 to . QED (Claim)

But then, setting: R'(Z",7) «+» R(Z™, F (%)), we have:

q
R(F(Z)) <> va"( )\ 2} = Fi(?) A R/(Z", 7).

i=1
QED (Lemma 2.6.11)

Note that if, in the last claim, we took R(Z" 331 ye xq) as being Z( ")

instead of Eg ), then in the proof of the claim we could take ¢ as being X
instead of ¥1. But then the application of Lemma 2.6.7 to H > = ¢[Z"] yields

a Zén) formula. Then we have, in effect, also proven:
Corollary 2.6.13. Let R:i:’",yil,...,y(lf) be Eén) where Iy, ...,l, < n. Let

Fi(Z) be a Egli) map to HY fori=1,...,r. Then R(z", F (%)) is (uniformly)
(n)
2.

As corollaries of Lemma 2.6.11 we then get:
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Corollary 2.6.14. LetG(xl ,...,xi”) be aEg n) map to H", wherej1,...,]p
n. Let F;(%) be aZg ") map to H¥ fori=1,...,p. Then H(Z) ~ G(F(2))

s uniformly Egn)

Proof: »
(%)« \/ T /\ Fi(2) Ny = G(Z)).
QED (Corollary 2.6.14)
Corollary 2.6.15. Let R(acl b jp) be E(n) where j; <n fori=1,...,p.
There is a 2(1 ") relation RI(2Y,...,2)) with the same field

Proof: Set: »
?) e\ F(N\ 2l = 20 A R(D).
i=1
QED (Corollary 2.6.15)

Thus in theory we can always get by with relations that have only arguments
of type 0. (Let one make too much of this, however, we remark that the
defining formula of R’ will still have bounded many sorted variables.)

Generalizing this, we see that if R is a relation with arguments of type < n,
then the property of being Zgn) depends only on the field of R. Let us define:

Definition 2.6.8. R’(z1 ,.. zﬁ’") is a reindezing of the relation R(aﬁzf, T
iff both relations have the same field i.e.

R' (i) +» R(Y) for y1,...,y € M.

Then:

Corollary 2.6.16. Let R(x’f,..., zir) be E( ") where Iy eeeytr < n. Let
R’(Z1 .....2") be a reindezing of R, where ji,...,jr <n. Then R is Zgn).
Proof:

R'Z) < R(Fi(z1),...,F (%))
& VEV 4 = 2" AR(E))

where
' = Fy () < a" = 20

QED (Corollary 2.6.16)
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We now consider the relationship between ¥* theory and the theory devel-
oped in §2.5. Zgo) is of course the same as 31 and p; is the same as the ¥y
projectum p which we defined in §2.5.2. In §2.5.2 we also defined the set P
of good parameters and the set R of very good parameters. We then define
the reduct M of M for any € [Onp/]<“. We now generalize these notions

to Egn). We have already defined the Zgn) projectum p". In analogy with
the above we now define the sets P", R™ of Egn) —good parameters. We also
define the Eg”) reduct M of M by p € [Onp|<].

Under the special assumption of soundness, there will turn out to be the
same as the concepts defined in §2.5.3.

Definition 2.6.9. Let M = (JZ!, B) be acceptable. We define sets M",
and predicates T"(z", ..., 2") as follows:

z0

MY =: M,T° =: B (i.e. MZ = M for n =0)

Mg“ ::<J;§L+1, g“} for £ =a",...,2°
T (et 7))« 2T Vi < w(@™t = (3, 27

/\Mgnﬂw_@o ): @i[2n+17$n])

(where (p;]i < w) is our fixed canonical enumeration of ¥; formulae.)
(Then T (i, a™*h),a”, ..., a®) 0 M7y o = @il 2™).
Clearly T"*! is uniformly Egn)(M).
Lemma 2.6.17.

(a) T"H s Egn)

(b) Let ¢ be ;. Then {(T"1, @) MM = [t} is £
Proof: We first note that Mg“ can be written as Hy = (H" "1, A;ﬁ“, g“),
where A" (2" 7) <31 A(z"1). Hence by Lemma 2.6.7:

(1) If (a) holds at n, so does (b). But (a) then follows by induction on n:

Case 1 n = 0 is trivial since H—%l is 31(N) for all rud closed N.

Case 2 n =m+ 1. Then T("*1D s Egn) by (1) applied to m.
QED (Lemma 2.6.17)

We now prove a converse to Lemma 2.6.17.
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Lemma 2.6.18. (a) Let R(x"!,... 2% be Egn). Then there is i < w
such that
R(wnJrl,f) VAN Tn+1(<i, xn+1>’ f)

(b) Let R(z7"*, ... 20) be EYLH). Then there is a X1 formula ¢ such that

R(F, %)« MIT! = 7.
Proof:
(1) Let (a) hold at n. Then so does (b).

Proof: We know that

R(@@™,2) « \/ 2" ("M, 2" 1)

for a E(()nH) formula P. Hence it suffices to show:

Claim Let P(z""1 %) be Z(()n+1). Then there is a 3 formula ¢ such that

PE 7))« MIT = o[z .

Proof: We know that there are Qi(i’?ﬂ,a_:’)(i = 1,...,p) such that @Q; is
Zg”) and

(2) P(z", %) « HIT' | U[F"H] where ¥ is ¥ and
HE = (H™ G3).
Applying (a) to the relation:

Vot @ = () A Qu(E T @)
we see that for each ¢ there is j; < w such that
Qi(ZTH ) & (jiy (7)) € Tiehs-

Thus Q;, T is uniformly rud in Tg“ fori=1,...,p. Pzis the restric-

tion of a relation rud in @Q;#(i = 1,...,p) to H", by (2). By §2
Corollary 2.2.8 it follows that Pz is the restriction of a relation rud in

2+ to {1 uniformly. Since MET! = <J;;)L+1, 7+1) is rud closed,
it follows by §2 Corollary 2.2.8 that:

P@E,3) o My ol )

for a ¥; formula . QED (1)
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Given (1) we can now prove (a) by induction on n.

Case 1 n=0.
Since X1 = 2(10), there is ¢; such that
R(z',2%) & M = ¢zt 20
< T, 2b), 2Y).
Case 2 n=m+ 1.
Let R(z"*1,...,20) be Zgn). By the induction hypothesis and (1) we
know that (b) holds at n. Hence:
R(z"tl gmtt om . 20) &

oMo F ol e

-----

for some 7. But then
R(z™ o 20 < T (G, 2T e 20).

QED (Lemma 2.6.18)

Note The reductions in (a) and (b) are both uniform. We have in fact im-

plicitly defined algorithms which in case (a) takes us from the Egn) definition

of R to the integer i, and in case (b) takes us from the 2§n+1) definition of

R to the ¥ formula .

We now generalize the definition of reduct given in §2.5.2 as follows:

Definition 2.6.10. Let a € [Ony|<v. M%¢ =: M; M™+he = Ml

a(0) ’,,,70,(”)

where oV = an Phy-

n+l,a _ A n+1l,a ntla
Thus M = <Jpn+1?T ) where Ta(O),,,A,a(n)'

Thus by Lemma 2.6.18

Corollary 2.6.19. Set a') = anp® for a € [Ony|<>.

(a) If D c H™"" is Egn) in a®,...,a™, there is (uniformly) an i < w
such that
D(xn+1) o <i7wn+1> c TnJrl,a

(b) If D(z"1) is Egnﬂ) in a®, ... a™ there is (uniformly) a ¥; formula
@ such that D(z"t1) & M"Hha = pgntl,



112 CHAPTER 2. BASIC FINE STRUCTURE THEORY

(Note Being Egn) in a is the same as being Egn) ina®, ..., a™ butIdonot

see how this is uniformly so. To see that a Egn) relation Rin a®, ..., a™ is

Egn) in a we note that for each n there is k such that y =anp” < \/ f (f

is the monotone enumeration of a and y = f”k), which is ¥ in a. However,

k cannot be inferred from the Egn) definition of R, so the reduction is not

uniform.)

We can generalize the good parameter sets P, R of §2.5.2 as follows:

Definition 2.6.11. PJ; =: [On]<%.

PE[H =: the set of a € Py, such that there is D which is Zgn)(M) in a with
DNHY, ¢ M.

(Thus we obviously have P! = P.)
Similarly:

Definition 2.6.12. R, =: P},.

R?Jl =: The set of a € R}, such that
M™ = hyma(p" LU (@ N p")).

Comparing these definitions with those in §2.5.6 it is apparent that R,
has the same meaning and that, whenever a € R, then M™% is the same
structure.

By a virtual repetition of the proof of Lemma 2.5.8 we get:

Lemma 2.6.20. a € P" <> T"* ¢ M.

We also note the following fact:

Lemma 2.6.21. Let a € R™. Let D be Zgn). Then D is Egn) in parameters
from p"t U {a®), ... 0™}, where ') =: a N pt. (Hence D is Zgn)(M) in
parameters from p"t1 U {a}.)

Proof: We use induction on n. Let it hold below n. Then:

—

D(%) «+ D'(7; a(o), e a("_l),g),

where &1,...,& < p™. (If n =0 the sequence a® ... a" D is vacuous and

pn = On]y[.)
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n+1

Let & = hpynt1 (G, (i, ™)), where py, ..., g, < p"t1. The functions:

E(l’) = th"’l(ji, <(L‘, a(n)>)
are E(ln) to H™ in the parameters a9, ..., a(™. But D(&) then has the form:
D/(fa CL(O), SRR a(n71)7 Fl(Ml); s 7F7‘(,u7‘))7

which is Egn) ina®, ... ,a("),ul, ..., g by Corollary 2.6.12.
QED (Lemma 2.6.21)

Definition 2.6.13. 7is a E;Ln) preserving map of M to M (in symbols
T M —(m) M) iff the following hold:
h

e M, M are acceptable structures of the same type.
° W//Hiﬁ C Hi, for i <n.

o Let p = gp(v{l, .,Uff{’) be a E,gn) formula with a good sequence ¥ of

variables such that ji,...,7m < n. Let z; € HJMZ fori =1,...,m.
Then:

M | ol & M E ¢lr(@).

m is then a structure preserving injection. If it is Egln)fpreserving, it is

ng)fpreserving for m < n and EZ(-")*preserving for i < h. If h > 1 then
YV HY, C HZ.. as can be seen using:

x € HY < M E Vu'u" = 0°z].

We say that 7 is strictly Egln) preserving (in symbols 7 : M — () M strictly)
h

iff it is Egln) preserving and 7~ H™ ¢ H". (Only if h = 0 can the embedding
fail to be strict.)

We say that 7 is X* preserving (7 : M —x« M) iff it is Zgn) preserving for

all n < w. We call m ZSJ") preserving iff it is Z;L") preserving for all h < w.

Good functions

Let n < w. Consider the class T of all Zgn) functions F(z%,...,z%) to HY,
where j,41,...,%, < n. This class is not necessarily closed under compo-
sition. If, however, G? is the class of Egj) functions G(z%,...,z') to H’

where 7,i1,...,%m < n, then G° C F and, as we have seen, elements of G°
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can be composed into elements of F — i.e. if F(2,...,2") is in F and
G(7) is in G® for [ = 1,...,n, then F(G(%)) lies in F. The class G of good
Zgn) functions is the result of closing G° under composition. The elements

of G are all E(ln) functions and G is closed under composition. The precise
definition is:

Definition 2.6.14. Fix acceptable M. We define sets GF¥ = GF of Egn)
functions by:

G° = The set of partial E() maps F(:/U1 ,...,xjmm) to H', where i < n and
Jlyeveydm SN

—

G*+1 = The set of H(Z) ~ G(F(& )) such that G(y/', ..., y) is in G* and
F, € G° is a map to j; for | =

It follows easily that G* C Gk:+1 (since G() ~ G(h(§)) where h(y{l, ) =
ifori =1,....m). G = G, =: |JG* is then the set of all good %\"
k
functions G* = |JG,, is the set of all good X* functions. All good Egn) func-
tions have a functionally absolute Egn) definition. Moreover, the good Egn)

functions are closed under permutation of arguments, insertion of dummy

arguments, and fusion of arguments of same type (i.e. if F(zy,.. .,xfﬁ'_l)

is good, then so is F'(y) ~ F(yi‘z(ll)), . ,y]?m))) and o : m — p such that
jg(l) =q; for [ < m.
To see this, one proves by a simple induction on k that:

Lemma 2.6.22. Fach G,]?L has the above properties.

The proof is quite straightforward. We then get:

Lemma 2.6.23. The good E functwns are closed under composition: Let
G(y1 s Y be good and letFl( %) be a good function to HI' forl = ... m.
Then the function G(F(Z)) is good.

Proof: By induction in k < w we prove:

Claim The above holds for F; € G*(1 =1,...,m).

Case 1 £ =0.
This is trivial by the definition of "good function".
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Case 2 k=h+1.
Let:
F’l(f) = Hl(ﬂ,l(f)a SRR ﬂ,pl (f))

for | = 1,...,m, where Hi(21,...,2.p,) is in G" and F; e GO is a
map to H'iforl=1,...,m,i=1,...,p.

Let ((l¢,i¢)|¢ = 1,...,p) enumerate
{L,pl=1,....m;i=1,....p}.
Define oy : {1,...,p;} — {1,...,p} by:
oy(i) = that & such that ([,7) = (l¢, i¢).

Set:
Hl’(zl, N ,Zp) ~ Hl(zgl(l), “. ’ZUI(PL))
forl=1,...,m. Fg’:Flg’i)5 for £ =1,...,p.

Clearly we have:
Fi(Z) = H{(F{(), ..., Fj(Z))
where H| € Gl for 1 =1,...,m. Set:
G'(z1,. .. 2| ~ G(H1(2),..., Hn(2)).
Then G’ is a good Egn) function by the induction hypothesis. But:
G(F (%)) = G'(F{(Z),..., F)()).

The conclusion then follows by Case 1, since F! € GY for i = 1,...,p.

QED (Lemma 2.6.23)
An entirely similar proof yields:

Lemma 2.6.24. Let R(zY',... xir) be Egn) where i1,...,i, < n. Let Fi(2)

rr

be a good Zgn) map to H'(L =1,...,m). Then R(F(Z)) is Zgn).

—

(Recall that R(F',?)) means:

T

Vv \w=FE) AR®G)).)

=1

Applying Corollary 2.6.13 we also get:
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Lemma 2.6.25. Let n = m + 1. Let R(@",z%,... i) be E(()n) where

i1y ip < m. Let Fi(Z) be a good Egn) map to H" for 1 =1,...,r. Then
R(z", F(2)) in B{V.

, i) we mean any function G’ which
is a reindexing of G as a relation. (In other words G, G’ have the same field,
ie.

By a reindexing of a function G(xlf, Ll

G(%) ~ G'(Z) for all z1,..., 2, € M.)
Then:

Corollary 2.6.26. Let Gz, ..., zir) be a good ng) map to H'. Let
G'(y]',...,y") be a map to H’, where j, j1,...,jr < n. If G’ is a rein-
dexzing of G, then G’ is a good Z(lm) function.

Proof: G/'(y) ~ F(G(Fi(y"),...,F(yl"))) where F is defined by ' = 3/
and Fj is defined by z}' = y/'. (Then e.g.
. min{i,j}
yifye H ,
F(y) = M

undefined if not.
where F' is a map to ¢ with arity j.)
But F, Fy ..., F, are \") good. QED (Corollary 2.6.26)
The statement made earlier that every good Zg") function has a functionally

absolute Egn) definition can be improved. We define:

Definition 2.6.15. ¢ is a good Zg") definition iff ¢ is a Egn) formula which

defines a good Zgn) function over any acceptable M of the given type.

Lemma 2.6.27. Every good Zgn) function has a good E(ln) definition.

Proof: By induction on k we show that it is true for all elements of G*.
If F € G° then F is a E(lz) map to H’ for an i < n. Hence any func-

tionally absolute Z(f) definition will do. Now let F' € G¥*!. Then F(%) ~
G(H1(%),...,Hy(%)) where G € G* and H; € G® for i = 1,...,p. Then
G has a good definition ¢ and every H; has a good definition ¥;. By the
uniformity expressed in Corollary 2.6.14 there is a Eg") formula x such that,
given any acceptable M of the given type, if ¢ defines G’ and ¥; defines
H!(i =1,...,p), then x defines F'(Z) ~ G'(H'(Z)). Thus x is a good Egn)
definition of F. QED (Lemma 2.6.27)
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Definition 2.6.16. Let a € [On,,|<“. e define partial maps h, fro
w x H™ to H™ by: m
hii(i,2) ~: hygn.a(i, (x, a(n)>)_

Then hg is uniformly Zgn) in a™, ... a® by Corollary ??. We then define
maps h? from w x H" to H° by:

hO(i,x) ~ ho(i,x)
hit (i, o) = B (D)o, by (D1, 2)).

Then }NLZ is a good Egn) function uniformly in IO

Clearly, if a € R™!, then
Y (w x p"thy = H™.
Hence:
Lemma 2.6.28. Ifa € R"™', then h"(w x p"t1) = M.

Corollary 2.6.29. If R" # 0, then X; C Zl(n) forl>1.

Proof: Trivial for n = 0, since Zl(o) = ;. Now let n = m + 1. Set:
D = H"Ndom(hy), where a € R". Then D is Zgn) by Lemma 2.6.24, since:

2" €D & hp(z") =hl(z")
= V22020 =t (a™) A 20 = 20).
Let R(Z) be X;(M). Let
R((I_f) <~ lel R QzlP(z", f)

where P is Xg. Set:
P'(@", %) <»: P(h™(a"), T).

Then P’ is Eg") in a. But for uf,...,u} € D, =P'(d",Z) can also be written

as a Egn) formula. Hence

R(Z) <> Qut € D...Qu} € DP'(d",T)
is Zl(n) in a. QED (Corollary 2.6.29)

We have seen that every Ei,n) relation is X ,. Hence:

Corollary 2.6.30. Let R™ # (). Then PRI

Huw:
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An obvious corollary of Lemma 2.6.28 is:

Corollary 2.6.31. Let a € RY;. Then every element of M has the form
F(&,a9, ... a™) where F is a good Egn) function and & < p"t1.

Using this we now prove a downward extension of embeddings lemma which
strengthens and generalizes Lemma 2.5.12

Lemma 2.6.32. Let n =m+ 1. Let a € [Onp|<% and let N = M™*. Let
T:N —y; N, where N is a J-model. Then:

(a) There are unique M,a such that u € R and M =N.

(b) There is a unique ® D T such that m1 : M —gom) M strictly and
0

m(a) = a.

(¢c) m: M —_m M.

(n
X

Proof: We first prove existence, then uniquenes. The existence assertion in
(a) follows by:

Claim 1 There are M,a, 7 D 7 such that M"* =N, a € R”M,
7: M —x, M, #(a) = a.
Proof: We proceed by induction on m. For m = 0 this immediate
by Lemma 2.5.12. Now let m = h 4+ 1. We first apply Lemma 2.5.12
to M™¢. It is clear from our definition that ppsm.a > ph,. Set N/ =
(M™)@5 . Then N’ = (J;,‘,T’}, where p = ppma. But it is clear
from our definition that 7" =T'NJ ;‘K{‘ Hence:
(1) ﬁtﬁ—&)o N'. ~ ~
By Lemma 2.5.12 there are then M, a,7 D 7 such that M% =N/,
ac€ Ry, 7: M —s, M™ and 7(a) = anpff; = al™.
(Note: Throughout this proof we use the notation:
a® = anp fori=0,...,m.)
By the induction hypothesis there are then M,a,# D 7 such that
M™ =M, #: M —x, M, and #(@) = a.
We observe that:
(2) a=anp.
Proof:
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(C) Let p =: ——OnﬁM Then a C p. But 7(a) = 7(a) =
anNpyy Ca=m7 () Hence a C a.

(D) w(anp) =a"(anp) C piyNa = @(a), since 7”’p C piy. Hence

anp=a. QED (2)
Since a € RT® we conclude that a € RY- and N = (M™®)a? =
MM QED (Claim 1)

We now turn to the existence assertion in (b).

Claim 2 Let M" = N and a € R” There is m D 7 sucht that 7 : M —>E<m
M and 7(a) = a.
Proof: Let 21,...,2, € M with 2; = F;(2)(i = 1,...,7), where F}; is
a Egm) (M) good function in the parameters a9, ..., a™ and z € N.
Let F; have the same Egm)(M)fgood definition in a®,...,a(™. Let
R(ui,...,u,) bea Eg") (M) relation and let R be Zgn)(M) by the same

definition.
Then R(F1(z1),. .., Fr(2r)) is E( )( M) ina®, ... a™ and
R(Fi(z1),...,Fr(z)) is Zg )(M) ina®,... a ( ) by the same defini-

tion. Hence there is # < w such that
R(F(3) o (i,(2) € T
R(F(2)) > (i, (3)) € T
where N = (JAT),N = (JA,T). Thus R(F(2)) is rud in N and
R(F(%)) is rud in N by the same rud definition. But 7 : N —x, N.
Hence:
R(F1(20),. Fo(z)  ROF (R(21), .., Fo(7(20))).
Thus there is 7 : M e M defined by 7(F(¢)) =: F(7(£)) whenever

£€OnnN, Fis E(lm) (M)- good in @, ...,a™ and F is E(lm) (M)
good in a®. ... alm by the same definition. But then

7(z) = 7(id(2)) = 7(z) for z € N.

Hence m D 7. But clearly

QED (Claim 2)
We now verify (c):
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Claim 3 Let M,a, r be as in Claim 2. Then 7 : M —rsm) M.
j

Proof: We first note that 7, being Zgn)fpreserving, is strictly so —

ie. p"M =g pt, for i =0,...,m. It follows easily that:

r(@?) = 7"a" = a® for i = 0,...,m.

We now proceed the cases.

Case 1l j=0.
It suffices to show that if ¢ is Z(ln) and z1,...,x, € N, then

M = olx1, ..., 2] = M = plr(z1), ..., m(z)].

Let z1,...,0, € M. Then z; = Fy(2)(i = 1,...,r) where z; € N
and F; is Egm) (M)-good in @®,...,a™. Let F; be Egm)(M)f
good in a@, ..., al™ by the same good definition.
By Corollary 2.6.19, we know that M = ¢[F1(21),..., Fy(2)] is
equivalent to

N EUlz,..., 2]

for a certain ¥; formula ¥. The same reduction on the M side
shows that M = @[Fi(z1),...,F-(2)] is equivalent to: N |=
Ulz1,..., 2] for z1,...,2, € N, where VU is the same formula.
Since 7 is Yg—preserving we then get:

M = p[7]< M |= ¢[F(2)]
[

— N = U[n(2)]

QED (Case 1)

Case 2 5 > 0.
This is entirely similar. Let ¢ be Zgn). By Corollary 2.6.19 it
follows easily that there is a ¥; formula ¥ such that: M |=

©lF1(21), ..., Fr(z)] is equivalent to:
N E=Yz,..., 2]
Since the corresponding reduction holds on the M-—side, we get
M = ¢la] ¢ M = ¢[n(2)],

since 7(x;) = w(Fi(2)) = F;(7(2:))- QED (Claim 3)
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This proves existence. We now prove uniqueness.

Claim 4 The uniqueness assertion of (a) holds.
Proof: Let M,a be such that M™% =N and & € R]\]\Z.
Claim M = M, a = a.

Proof: By a virtual repetition of the proof in Claim 2 there is a
T M — 5 (m) M defined by:
1

(3) 7(F(2)) = F(z) whenever z € N, F is a good Egm) (M) function
in a©, ..., a™ and F is the X\ (M) function in a®, ... a™
with the same good definition.

But 7 is then onto. Hence 7 is an isomorphism of M with M. Since
M, M are transitive, we conclude that M = M,a = a.
QED (Claim 4)

Finally we prove the uniqueness assertion of (b):
Claim 5 Let 7' : M —ro(m) M strictly, such that 7'(@) = a. Then ' = 7.
0

Proof: By strictness we can again conclude that 7/ (E(i)) = al for
i=0,...,m. Let v € M, z = F(z), where z € N and F is a ng)(ﬁ)
good function in the parameters a®),...,a™). Let F be Egm)(M) in
a9, ... a™ by the same good definition.
The statement: z = F(2) is ng)(ﬁ) in a®,...,a"™. Since 7’ is
Z(()m)fpreserving, the corresponding statement must hold in M — i.e.
m'(x) = F(7(2)) = ().

QED (Lemma 2.6.32)

2.7 Liftups

2.7.1 The X, liftup

A concept which, under a variety of names, is frequently used in set theory
is the liftup (or as we shall call it here, the X liftup). We can define it as
follows:

Definition 2.7.1. Let M be acceptable. Let 7 > w be a cardinal in M. Let
H = HM and let 7 : H —yx,, H' cofinally. We say that (M’ ') is a 3o liftup
of (M, ) iff M’ is transitive and:

(a) 7’ Dmand 7' : M =y, M’
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(b) Every element of M’ has the form #/(f)(z) for an x € H’ and an
f € T° where I'° = I'°(7, M) is the set of functions f € M such that
dom(f) € H.

(Note The condition of acceptability can be relaxed considerably, but that
is uninteresting for our purposes.)

If (M', 7'} is a liftup of (M, ) it follows easily that:

Lemma 2.7.1. 7' : M —x, M’ cofinally.

Proof: Let y € M', y = «'(f)(x) where x € H' and f € T, then y €
7' (rng(f)). QED (Lemma 2.7.1)

Lemma 2.7.2. (M',x') is the only liftup of (M, ).

Proof: Suppose not. Let (M* 7*) be another liftup. Let ¢(v1,...,v,) be
0. Then
M= olr'(fi)(z1), - 7' (fu)(2n)] <

(1,...,20) € T({(DIMILf(2)]})
M* = elr*(fi)(z1), .., 7 (fn)(2n)].
Hence there is an isomorphism o of M’ onto M* defined by:
o(w'(f)(x)) = =*(f)(z)
for f € T°, 2 € n(dom(f)).

But M'’, M* are transitive. Hence o =id, M’ = M*, ' = n*.
QED (Lemma 2.7.2)

(Note M = ¢[f(Z)] means the same as

n

\/yl' /\yz fz Zj /\M):(P[ﬂ)

—

Hence if e = {(2)|M = ¢[f(Z)]}, then e C >< dom(fl) € H. Hence e € M

by rud closure, since e is Xy(M). But then e E H, since P(u) N M C H for
ue H.)

But when des the liftup exist? In answering this question it is useful to devise
a 'term model’ for the putative liftup rather like the ultrapower construction:

Deﬁnition 2.7.2. Let M,7,7 : H —yx, H' be as above. The term model
= D(M,7) is defined as follows. Let e.g. M = (JAB). D =: (D,=
A , B) where



2.7. LIFTUPS 123

D = the set of pairs (f,z) such that f € Iy and x € H’

(fix) =(g,y) < (2,y) € 7({(z, w)[f(2) = 9(y)})
(f,2)€(g,y) < (z,y) € 7({{z,w)|f(2) € 9(v)})
Alf, @) o x € n({2]Af(2)})

B(f,x) ¢ x € n({z|Bf(2)})

(Note D is an ’equality model’, since the identity predicate = is interpreted
by 2 rather than the identity.)

Loz theorem for D then reach:

Lemma 2.7.3. Let ¢ = p(v1,...,v,) be Xg. Then

D @l(f1,21),- -, (fos@a)] & (@1, 2a) € T{(DIM E @l f(2)]}).

Proof: (Sketch)

We prove this by induction on the formula . We display a typical case of the
induction. Let ¢ = \/u € v1¥. By bound relettering we can assume w.l.0.g.
that u is not among vy, ...,v,. Hence u,vy, ..., v, is a good sequence for W.
We first prove (—). Assume:

D = o[(f1,21),- -5 (fn> Tn)]-
Claim (21, ...,2,) € 7(e) where
e={(z1,...,2) M E ¢[fi(z1) ... falzn)]}.

Proof: By our assumption there is (g,y) € D such that (g,y)&(f1,?) and:

D = Y[(g,y), (fi,21),- -, (fr: Tn)].
By the induction hypothesis we conclude that (y, ) € 7(¢) where:

é = {(w, B)|g(w) € fi(z1) A M = ¥[g(w), f()}.

Clearly e,é € H and

H = Aw, Z((w,2) € ¢ — (2) € e).

Hence
H' E A, Z((w, Z) € mé — (2) € m(e)).

Hence (Z) € 7(e). QED (=)
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We now prove (+)
We assume that (z1,...,z,) € 7(e) and must prove:

Claim D E o[(f1,21), .-, (fn, Tn)]-
Proof: Let r € M be a well ordering of rng(f1). For (Z) € e set:
g((%)) = the r-least w sucht that M |
M ¥lw, fi(21),- .., fulzn)]-

Then g € M and dom(g) = e € H. Now let € be defined as above with this
g. Then:

HE /\zl,...,zn(<,§') €e+ ((2),2) €e).
But then the corresponding statement holds of m(e), w(€) in H'. Hence
((Z), ) € m(e).
By the induction hypothesis we conclude:
D 'Z \I/[<g, <f>>7 <f1, x1>7 SRR <fna xn)]
The conclusion is immediate. QED (Lemma 2.7.3)
The liftup of (M, ) can only exist if the relation € is well founded:
Lemma 2.7.4. Let € be ill founded. Then there is no (M',x') such that

' M —x, M'. M’ is transitive, and ' D 7.

Proof: Suppose not. Let (fii1,zi11)€(fi, z;) for i < w. Then
(Tit1, i) € T{(z, )| fir1(2) € fi(w)}.

Hence 7/(fit1)(xir1) € 7' (fi)(x:) (i < w).
Contradiction! QED (Lemma 2.7.4)

Conversely we have:

Lemma 2.7.5. Let € be well founded. Then the liftup of (M, ) exists.

Proof: We shall explicitly construct a liftup from the term model . The
proof will stretch over several subclaims.

Definition 2.7.3. 2* = 7*(z) =: (const,, 0), where const, =: {(z,0) = the
constant function x defined on {0}.

Then:
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(1)

™ M =5, D.
Proof: Let ¢(v1,...,v,) be Xg. Set:

e={(z1,...,2n)|M E ¢[consty, (z1),...,const,, (z,)]}
Obviously:

_{ {(0,...,0)}if M &= plz1,...,24)

| 0if not.
Hence by toz theorem:
DEplzi,....x] < (0,...,0) € m(e)
M = o[z, ...,z

D E Extensionality.
Proof: Let p(u,v) == Awecuwev N\Nwevweu.

Claim D | ¢la,b] — a = b for a,b € D. This reduces to the Claim:
Let a = (f,z),b = (g,y). Then

D Eo[(f,2),(g:9)] < (z,y) € 7(e)
(fix) =(g,y)

T

where

(z,0)[M |= plz, wl}
(z,0)|f(2) = g(w)}

@
Il

{
{
QED (2)

Since = is a congruence relation for D we can factor D by =, getting:

where: .
D = {s|s e D}
s=A{tlt= s} forse D
3Et <»: sEt

A§ ¢ /le, B3 «: Bs.

Then D is a well founded identity model satisfying extensionality. By
Mostowski’s isomorphism theorem there is an isomorphism & of D onto
M', where M' = (|M'|, e, A’, B') is transitive.

Set:
[s] =: k(8) for s€ D

7' (x) =: [2*] for x € M.
Then by (1):
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M =y, M.
Lemma 2.7.5 will then follow by:

Lemma 2.7.6. (M’ 7') is the liftup of (M, ).

We shall often write [f,z] for [(f,z)]. Clearly every s € M’ has the
form [f,x] where f € M; dom(f) € H, x € H'.

Definition 2.7.4. H =: the set of [f,z] such that (f,z) € D and
feH.

We intend to show that [f,z] = n(f)(z) for z € H. As a first step we
show:

H is transitive.

Proof: Let s € [f,z] where f € H.

Claim s = [g,y] fora g € H.

Proof: Let s = [¢/,y]. Then (y,x) € w(e) where: e = {(u,v)|¢'(u) €
f(v)} set:
¢ = {ulg'(u) € rg(f)}, g=g'I¢".

Then g C rmg(f) x dom(¢’) € H. Hence g € H. Then [¢',y] = [g,9]
since 7(¢’)(y) = 7(g)(y) and hence

(y,9) € 7({{u,v)|g'(u) = g(v)}). But e = {(u,v)|g(u) € f(v)} Hence
l9.y] € [f, 2] QED (4)

But then:

[f,z] = m(f)(z) for f € H,(f,x) € D.
Proof: Let f,g € H,(f,x),{g,y) € D. Then:

[f.x] € g,y] < (x,y) € 7(e)
< w(f)(z) € m(9)(y)

where e = {(u, v)[f(u) € g(v)}. Hence there is an €-isomorphism o of
H onto H defined by:

o(r(f)(x)) = [f, z].
But then o = id, since H, H are transitive. (5)
But then:
7 D

Proof: Let © € H. Then 7/(z) = [const,,0] = 7(const,)(0) = 7(z)
by (5).
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(7) [f,2] = 7'(f)(x) for (f,z) € D.
Proof: Let a = dom(f). Then [id,, 7| = id;(,)(x) = = by (5). Hence
it suffices to show:

[f,x] = [consty, 0]([idg, z]).
But this says that (z,0) € m(e) where:

(z,w)|f(2) = constf(u)(ida(2))}

(z,0)[f(2) = f(2)} = a x {0}.

(&

{ f
{ f

QED (7)

Lemma 2.7.6 is then immediate by (3), (6) and (7). QED (Lemma 2.7.5)

Lemma 2.7.7. Let m* D m such that ©* : M —x, M*. Then the liftup
(M' 7"y of (M,n) exists. Moreover there is a o : M' —x, M* uniquely
defined by the condition:

!/ . /
olH =id, on’ = =".

Proof: (M’ ') exists, since € is well founded, since (f, z)E(g,y) +> 7 (f)(z)
7(g)(y). But then:

M ): 90[77/(,](1)(:51)7 tr ﬂ-l(fr)(l'r)] A

- (r1,...,2) € w(e)

& M Eolr*(fi)(@),. .., 7 (fr) (@)

where e = {(z1,...,2)|M = ¢[f(Z)]}. Hence there is o : M’ —5, M*
defined by:
o(x'(f)(@)) = 7*(f)(x) for (f,x) € D.

Now let 6 : M’ —x, M* such that ¢ [ H' =id and o7’ = «".
Claim ¢ = o.

Let s € M', s = @'(f)(x). Then &(7'(f)) = 7*(f), 6(x) = x. Hence
a(s)=7*(f)(z) =o(s). QED (Lemma 2.7.7)

2.7.2 The X" liftup

We now attempt to generalize the notion of g liftup. We suppose as before
that 7 > w is a cardinal in M and H = HM. As before we suppose that
7' H —x, H' cofinally. Now let p™ > 7. The Xo-liftup was the "minimal"
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(M’ 7'y such that 7’ D 7 and # : M —y, M'. We shall now consider
pairs (M’ ') such that 7’ D 7 and ' : M —y, M'. Among such pairs
(M' ,7") we want to define a "minimal" one and show, if possible, that it
exists. The minimality of the Xy liftup was expressed by the condition that
every element of M’ have the 7/(f)(z), where x € H' and f € I'%(r, M).
As a first step to generalizing this definition we replace I''(, M) by a larger
class of functions I'™ (7, M).

Definition 2.7.5. Let n > 0 such that 7 < p%,. I (7, M) is the set of maps
f such that

(a) dom(f) € H

(b) For some i < n there is a () (M) good function G and a parameter
p € M such that f(z) = G(z,p) for all z € dom(f).

Note Egl) good functions are many sorted, hence any such function can be
identified with a pair consisting of its field and its arity. An element of I'",
on the other hand, is 1-sorted in the classical sense, and can be identified
with its field.

Note This definition makes sense for the case n = w, and we will not exclude
this case. A Zéw) formula (or relation) then means any formula (or relation)
which is B for an i < w — i.e. 2 = o,

We note:

Lemma 2.7.8. Let f € T™ such that tg(f) C H', where i < n. Then

f(x) = G(z,p) for x € dom(f) where G is a good Zgh) function to H* for
some h < n.

Proof: Let f(z) = G'(z,p) for x € dom(f) where G’ is a good Zgn) function

to H’ where h,j < n. Since every good E(ln) function for £ > h, we can
assume w.l.o.g. that 7,7 < h. Let F be the identity function defined by
vl =1l (ie. yt = F(2?) < y' = 27). Set: G(z,y) ~: F(G'(z,y)). Then F is
a good Egh) function and so is G, where f(z) = G(z,p) for = € dom(f).
QED (Lemma 2.7.8)

Lemma 2.7.9. I'(7,m) C I"(1, M) for i < n.

Proof: For 0 < ¢ this is immediat by the definition. Now let ¢ = 0. If
f €TO then f(x) = G(x, f) for € dom(f) where G is the X" function

defined by
y=G(z, f) < (fis a function A

Ny, z) € f).
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QED (Lemma 2.7.9)

The "natural" minimality condition for the Zé") liftup would then read: Each
element of M has the form #'(f)(z) where z € H and f € ™. But what
sequence can we make of the expression "7'(f)(x)" when f is not an element
of M7 The following lemma rushes to our aid:

Lemma 2.7.10. Let 7' : M — ) M' where n >0 and «" D w. There is a
0
unique map 7" of T™(r, M) to T"(w (1), M) with the following property:

x Let f € I'"™(r,M) such that f(x) = G(z,p) for x € dom(f) where G
s a good Zgi) function for an i < n and x is a good Egi) definition of
G. Let G’ be the function defined on M' by x. Let f' = ©"(f). Then
dom(f") = w(dom(f)) and f'(z) = G'(x,7'(p)) for x € dom(f’).

Proof: As a first approximation, we simply pick G, x with the above prop-
erties. Let G’ then be as above. Let d = dom(f). The statement

Nz ed\yy=G(z,p)is 2(()71) is d, p, so we have:
Nz en@d\/yy=_G(nr0p).

Define fy by dom(fy) = n(d) and fo(x) = G'(z,7(p)) for z € w(d). The
problem is, of course, that G,x where picked arbitrarily. We might also
have:

f(x) = H(x,q) for x € d,

where H is Egj)(M) for a j < n and ¥ is a good Egj) definition of H. Let
H' be the good function on M’ defined by . As before we can define f;
by dom(f1) = 7(d) and fi(x) = H'(z,7'(q)) for z € w(d). We must show:
fo = fi. We note that:

A& € dG(z,p) = H(z,q).
But this is a E[(]") statement. Hence

N\ €n(d)G (x,p) = H'(z,9).
Then fo = fi. QED (Lemma 2.7.10)
Moreover, we get:

Lemma 2.7.11. Let n,7, 7,7, 7" be as above. Then 7' (f) = 7'(f) for
f el (r, M).
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Proof: We know f(z) = G(z, f) for x € d = dom(f), where:

G(z, f) <> (f is a function Ay = f(x)).
Then ﬂ”(f)(:c) = G'(z,7'(f)) = 7'(f)(z) for x € n(d), where G’ has the
same definition over M. QED (Lemma 2.7.11)
Thus there is no ambignity in writing 7/(f) instead of 7”(f) for f € T™.
Doing so, we define:

Definition 2.7.6. Let w < 7 < p{; where n < w and 7 is a cardinal in M.
Let H= HM and let 7 : H —y, H' cofinally. We call (M',7') a E(()") liftup
of (M, ) iff the following hold:

(a) 7’ DO 7w and 7’ : M—>Egn> M.

(b) Each element of M’ has the form «'(f)(x), where f € T"(7, M) and
reH.

(Thus the old ¥y liftup is simply the special case: n = 0.)

Definition 2.7.7. I'!(7, M) =: the set of f € I'(r, M) such that either
i<nand mg(f) C Hi;ori=n<wand f € H},.

i ) _ A

(Here, as usual, H' = S [A] where M = (J2', B).)

Lemma 2.7.12. Let f € I'}(7,M). Let 7' : M — ) M’ where ' O m.
0

Then 7' (f) € T2 (x'(7), M").
Proof:

- M / M’
Case 1 i =n. Then f € Hj . Hence 7'(f) € H

Case 2 1 < n.

By Lemma 2.7.9 for some h < n there is a good Zgn)(M) function G(u,v)
to H® and a parameter p such that

f(z) = G(z,p) for x € dom(f).
Hence:
' (f)(@) = G'(z,7'(p)) for = € dom(w(f)),
where G’ is defined over M’ by the same good X(n) definition. Hence
mg(7'(f)) C H,. QED (Lemma 2.7.12)

n)

The following lemma will become our main tool in understanding E((] liftups.
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Lemma 2.7.13. Let R(w?,...,xi’“) be 2(()”) where i1,...,4 < n. Let f) €
Ir(l=1,...,r). Then:

(a) The relation P is E(()n) in a parameter where:
P(2) <: R(f1(z1),. -, fr(2))-

(b) Let " > 7 such that @' : M — ) M'. Let R’ be Zén) (m’) by the same
0

definition as R. Then P’ is E((]n)(M’) in ' (p) by the same definition
as P in p, where:

P'(Z) < RU(7'(f1)(=21), - 7' (fr) (20))-

Before proving this lemma we note some corollaries:

Corollary 2.7.14. Lete = {(2)|P(2)}. Thene € H and w(e) = {(2)|P'(2)}.

Proof: Clearly e C d = * dom(f;) € H. But then d € Hj,n and e € Hyn
1=1

since (H,n, PNH,n) is amenable. Hence e € H, since H = HM and therefore
P(u)N M C H foru € H.

Now set ¢/ = {(2)|P'(2)}. Then ¢’ C n(d) = l
hence 7(dom(f;)) = dom(w(f;)). But

A@ €d((®) € e o P()

dom(m(f;)) since 7’ D m and
1

X =

which is a Z(()n) statement about e,p. Hence the same statement holds of
m(e),m(p) in M'. Hence

NE € n(d)((Z) € n(e) ¢+ P'(2)).
Hence 7(e) = €'. QED (Corollay 2.7.14)

Corollary 2.7.15. (M, w) has at most one E(()n) liftup (M', 7).

Proof: Let (M*,7*) be a second such. Let (vl ... ,vir) be a Eén) for-
mula. (In fact, we could take it here as being E(()O).) Let e = {(?)|M E
elfi(z1),-.., fr(zr)]} where fi e TR (I =1,...,7). Then:

M ol (fU) (@), 7 (fr) ()] <

< (x1,...,xp) € 7(e)
& M* = ol (fi)(z1),. ... 7 (fr)(zr)]
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for z; € m(dom(f)(I=1,...,7).

Hence there is an isomorphism o : M’ M* defined by:

o(m'(f) (@) = 7" (f)(x)
for f eI, x € w(dom(f)). But M’, M* are transitive. Hence o =id, M' =
M* 7' =7 QED (Corollary 2.7.15)

We now prove Lemma 2.7.13 by induction on n.

Case 1 n=0.
Then f1,...,fr € M and P is Xg in p = (f1,..., fr), since f; is rudi-
mentary in p and for sufficiently large h we have:

.
P(2) < \/ g1, € Cu)(/\ wi = fi(Z) A R())
=1
where R is Y. If P’ has the same X definition over M’ in 7/(p), then

P(z) <V, . € Cnlr®)( /r\lyi = 7(fi)(z:) A R(9))

< R(r(f)(%))
QED

Case 2 n = w.

Then ¢ = (U =, Let R(z¥,...,2%) be . Since every £{"
h<w

relation is Egk) for £ > h, we can assume h taken large enough that

i1,...,% < h. We can also choose it large enough that:
fi(z) 2 Gi(z,p) for I =1,...,v

where G is a good E(lh) map to H%. (We assume w.l.0.g. that p is the
same for [ =1,...,r and that d; = dom(f;) is rudimentary in p.) Set:

P(Z,y) <»: R(G1x1,9),...,G(xy,y)).

By §6 Lemma ?7, P is Egh) (uniformly in the Egh) definition of R and
G1,...,G,). Moreover:

P(2) < P(Z,p).

Thus P is uniformly Egh) in p, which proves (a). But letting P’ have

the same Egh) definition in 7’(p) over M’, we have:

P'(2) < P/(Z,7'(p))
< R(7'(f)(z), ., 7' (£r)(z),
which proves (b). QED (Case 2)
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Case 3 0 <n<w.
Let n = m+ 1. Rearranging arguments as necessary, we can take R as
given in the form:

R(y?,...,y?,:::lf,...,ﬁf)
where i1,...,5, <m. Let fi €T for I =1,...,r and let g1,...,g1 €
.
Claim

(a) P is Z(()n) in a parameter p where
P(i, 2) ¢ R(§(), f(2).

b) If #/, M’ are as above and P’ is > (M) in 7 p) by the same
0
definition, then

—

P'(w, %) ¢ R/ (r'(§)(@), 7' ()(2))
where R’ has the same Z(()n) definition over M'.

—

We prove this by first substituting f(2) and then §(u), using two different
arguments. The claim then follows from the pair of claims:

Claim 1 Let:
PO(Zjnv Z) = R(ynv fl(zl)’ cee 7f’f‘(z7“))’
Then:

(a) Ppis E(()n)(M) in a parameter pg.

(b) Let 7/, M', R’ be as above. Let Pj have the same Z((]n>(M’) defi-
nition in 7’(pg). Then:

Fo(y", Z) < R'(y", 7' (f)(2)).

Claim 2 Let

P(u_jv Z) Ang Po(gl(w1)7 o ,gs(ws), 2)
Then:

(a) Pis E(()n) (M) in a parameter p.

(b) Let 7/, M’', P} be as above. Let P’ have the same Egn)(M’) defi-
nition in 7/(p). Then
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We prove Claim 1 by imitating the argument in Case 2, taking h = m and
using §6 Lemma 2.6.11. The details are left to the reader. We then prove
Claim 2 by imitating the argument in Case 1: We know that ¢g1,...,gs € H".
Set: p=1{(g1,---,9n,p). Then P is E(()n)(M) in p, since:

P(i,2) ¢ \/ 51 ... 4s € Ca(p)(/\ wi = gi(wi) A Ro(, 7))
=1

where g;, po are rud in P, for a sufficiently large h. But if P’ is Z(()")(M ) in
IT'(P) by the same definition, we obviously have:

QED (Lemma 2.7.13)

We can repeat the proof in Case 3 with "extra" arguments ™. Thus, after re-

arranging arguments we would have R(ud", §", :Ulf, oo, xlr) where iy, . iy <
n. We would then define
P(@", 1%, 2) < R(@™, §(0), (2)).
This gives us:
Corollary 2.7.16. Letn < w. Let R(u", ;vlf, oo, be E(()n) where iy, ..., iy <

n. Let f e Iy for l=1,...,r. Set:

P(le,g) g R(ﬁnmfl(zl)a ce 7fr(Zr))‘

Then:

(a) P(u", Z2) is Zé") in a parameter p.

(b) Let ©' > 7 such that ©' : M — ) M. Let R’ be E(()n) (M) by the same
0
definition. Let P’ be Z(()n)(M’) in 7 (p) by the same definition. Then

P, 2) < R(@, 7 (f1)(z1), ..., 7 (f)(z)).

By Corollary 2.7.15 (M, 7) can have at most one E(()n) liftup. But when does

it have a liftup? In order to answer this — as before — define a term model
D = D™ for the supposed liftup, which will then exist whenever D is well
founded.
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Definition 2.7.8. Let M, 7, H,H',m be as above where p}, > 7,n < w.

The Zé") term model D = ~]D>(”) is defined as follows: (Let e.g. M = (J4, B).)
We set: D = (D, €, A, B) where:

D =DM =: the set of pairs (f,z)
such that f € I'"(7, M) and
x € w(dom(f))

(f,x) = {g9,y) ©: (w,y) € 7w(e), where

e ={{z,w)|f(z) = g(w)}.
(f,2)€(9,y) < (z,y) € w(e), where

e ={{z,w)|f(z) € g(w)}

(similarly for A, B).

We shall interpret the model D in a many sorted language with variables of
type ¢ < w if n = w and otherwise of type ¢ < n. The variables v* will range
over the domain D; defined by:

Definition 2.7.9. D; = D =: {(f,z) € D|f € T"}.

Under this interpretation we obtain f.os theorem in the form:

Lemma 2.7.17. Let p(vi', ... vir) be Zén). Then:
D= ol(fi,z1), - (fry )] < (21,0 20) € ()

where e = {(Z)|M = ¢[fi(21), ..., fr(z:)]} and (fi,z1) € Dy, forl=1,... 7.
Proof: By induction on ¢ we show:

Claim If i <n or i = n < w, then the assertion holds for (i), formulae.
Proof: Let it hold for j < i. We proceed by induction on the formula .

Case 1 ¢ is primitive (i.e. ¢ is v;€vj, v;=v;, Av; or By, (for M = (J2, B)).
This is immediate by the definition of D.
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Case 2 ¢ is Eg) where j < ¢ and h = 0 or 1. If A = 0 this is immediate
by the induction hypothesis. Let h = 1. Then ¢ = \/ v/ ¥, where ¥

is Z((f). By bound relettering we can assume w.l.0.g. that u' is not in
our good sequence vy, ..., vl . We prove both directions, starting with
(—=):

Let D = ¢[(f1,21),. .., (fr,zr)]. Then there is (g,y) € D; such that

D ): W[(Qay% <f1,$1>, AR <f7"7x7">]

(u?, ¥ being the good sequence for ¥). Set ¢/ = {(w, 2)|M = ¥[g(w), Z(F)]}.
Then (y,Z) € w(e’) by the induction hypothesis on ¢. But in M we

have:
Nw Z(w,2) € ¢ — () €e).

This is a II; statement about e’,e. Since m : H —y, H' we can
conclude:

/\w,Z((w,Z) e n(e') = (Z € m(e)).
But (y,#) € w(¢’) by the induction hypothesis. Hence (Z € m(e). This
proves (—). We now prove (+). Let (Z) € w(e). Let R be the Z(()])

relation
R(w,z1,...,2:) <=M E plw, 21, ..., 2.

Let G be a E(()j)(M) map to H’ which uniformizes R. Then G is a

spezialization of a function G’(zi“, .., 2" such that hy < j for [ < j.

Thus G’ is a good E((]j) function. But
fi(z) = Fi(z,p) for z € dom(f;) for L =1,...,r

where Fj is a good Zék) map to HM for I =1,...,rand j < k <i. (We
assume w.l.0.g. that the parameter p is the same for all [ = 1,...,7,.)
Define G” (u*, w) by:

G" (u,w) ~: G’((u){fl, e (u)?j,w)

then G” is a good ng) function. Define g by: dom(g) = ‘;1 dom( f;)

and: g((2)) = G"({2),p) for (Z) € dom(g). Then g € T'™ arlla g({(2)) =
G(fi(z1),..., fr(z)). Hence, letting:

—

¢ = {{w, )|M |= ¥[g(w), f(2)]},

we have:
AZ(B) e e o ((D,2) € ).

This is a II; statement about e, e’ in H. Hence in H' we have:

A Z(2) € n(e) & ((2),5) € ().
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But then ((Z),Z) € 7(e’). By the induction hypothesis we conclude:

D = ¥[(g, (2), (fr,21), - (frs )]

Hence:

D ): 90[<f17x1>7 sy <fr7$7“>]'
QED (Case 2)

Case 3 pis Ug AU, Uy ATy, Uy — Uy, Uy <> Uy, or 0.

This is straightforward and we leave it to the reader.

Case 4 ¢ = \/u® € v;x or Au’ € vyx, where v; has type > i. We display
the proof for the case ¢ = \/u’ € v;x. We again assume w.l.0.g. that
u #wvjfor j=1,...,7r. Set: ¥ = (u’ € vy A x). Then ¢ is equivalent
to \/ u'¥. Using the induction hypothesis for x we easily get:

D ): \Ij[<gay>v <f17mi>v ) <f1“7x7‘>]

(y,x1,...,25) € 7(e)

(*)

—

where ¢/ = {(w,2)|M | ¥[g(w), f(Z)]}. Using (*), we consider two
subcases:

Case 4.1 ¢ < n.
We simply repeat the proof in Case 2, using (%) and with ¢ in place of

J.
Case 4.2 i =n < w.
(Hence v has type n.) For the direction (—) we can again repeat the

proof in Case 2. For the other direction we essentially revert to the
proof used initially for 3¢ liftups.

We know that e € H and (%) € 7(e), wheree = {(Z2)|M = ¢[fi(21),- .., fr(z)]}-
Set:

R(w”,Z) > M ): \Ij[wnvfl(zl)a R fr(zr)]'

Then R is E(()n) by Corollary 2.7.16. Moreover \/ w"R(w", Z) <+ (Z) € e.
Clearly f; € Hjy; since f; € I'y. Let s € Hy,; be a well odering of
Jrng(f;). Clearly:

R(w™ 2Z) —w" € fi(z)

— w" € Jrng(f1).

We define a function g with domain e by:

9((Z)) = the s-least w such that R(w, ?).
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Since R is Zén), it follows easily that g € H%. Hence g € I'7'. But
then

/\2’((2} € e+ ((2),2) € ¢), where € is defined as above, using this g.

Hence in H' we have:

NZ(Z) e nle) & ((2),2) € ().
Since (Z) € w(e) we conclude that ((Z),Z) € w(e’). Hence:

D = ¥[(g, (), (fr,x1), -, (fro 20)]-

Hence:

D ): 90[<f1,1'1>7 R <fr71:7">]'

QED (Lemma 2.7.17)

Exactly as before we get:

Lemma 2.7.18. If € is ill founded, then the E(()n) liftup of (M, ) does not
exist.

We leave it to the reader and prove the converse:

Lemma 2.7.19. If € is well founded, then the E(()n) liftup of (M, ) exists.

Proof: We shall again use the term model D to define an explicit E[()n) liftup.

We again define:

Definition 2.7.10. z* = n*(z) =: (consty, 0), where const, =: {(z,0)} =
the constant function x defined on {0}.

Using Loz theorem Lemma 2.7.17 we get:

(1) T M —>Z(n) D
0 .
(where the variables v* range over J; on the DD side).

The proof is exactly like the corresponding proof for Yg-liftups ((1) in
Lemma 2.7.5). In particular we have: 7* : M —yx, D. Repeating the
proof of (2) in Lemma 2.7.5 we get:
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(2)

D E Extensionality.
Hence 22 is again a congruenzrelation and we can factor D, getting:

where )
D =:{38|s € D}, § =: {t|t =2 s} for s € D

3EL & sCt
A§ 4 As, Bs : Bs
Then D is a well founded identity model satisfying extensionality. By
Mostowski’s isomorphism theorem there is an isomorphism & of D onto
M’ where M' = (|M'|,€, A’, B') is transitive. Set:
[s] =: k(8) for s€ D
7' (z) =: [2*] for z € M
H,=:{s8]seD;j}(i<nori=n<w).
We shall initially interpret the variables v’ on the M’ side as ranging
over H;. We call this the pseudo interpretation. Later we shall show

that it (almost) coincides with the intended interpretation. By (1) we
have

7 M 5y M’ in the pseudo interpretation. (Hence ' : M — 5
0 0

M)

Lemma 2.7.19 then follows from:

Lemma 2.7.20. (M’ 7'} is the £ liftup of (M, ).

For n = 0 tis was proven in Lemma 2.7.6, so assume n > 0. We again
us the abbreviation:

[f,x] = [{f,z)] for (f,z) € D.

Defining H exactly as in the proof of Lemma 2.7.6, we can literally
repeat our previous proofs to get:

H is transitive.

[f, 2] = n(f)(x) if f € H and (f,z) € D. (Hence H = H'.)
' D

(However (7) in Lemma 2.7.6 will have to be proven later.)

In order to see that m: M —5m) M’ in the intended interpretation we
must show that H; = H]iw, for ¢ < m and that H, C H},;. As a first
step we show:
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H; is transitive for ¢ < n.

Proof: Let s € H;,t € s. Let s = [f,z| where f € I'?. We must show
that ¢t = [g,y] for g € T}. Let ¢t = [¢/,y]. Then (y,x) € w(e) where

e = {(u,v)|g'(u) € f(v)}.

Set:
a=:{ulg'(u) e mg(f)},g=4¢ Na.

Claim 1 g I7.
Proof: a C dom(q’) is Eén). Hencea € H and g € I'". If i < n,
then rng(g) C rng(f) C Hj,. Hence g € I'}'. Now let i = n. Then
rng(f) € I'y and the relation z = g(y) is 2(()"). Hence g € Hy,.
QED (Claim 1)
Claim 2 t = [g, y]
Proof:
/\u,v((u,v> €e— (u,u) €e)
where ¢ = {(u,w)|g(u) = ¢'(w)}. Hence the same II; statement
holds of 7(e),m(e’) in H'. Hence (y,y) € w(e¢’). Hence [g,y] =
lg' 9l =t QED (7)

We can improve (3) to:

Let U = \/vil,... virp, where ¢ is Z(()n) and iy < n or iy =n < w for

v1?
l=1,...,7. Then 7’ is "WU—elementary" in the sense that:

M = V[F] ++ M' = ¥[r'(Z)] in the pseudo interpretation.

Proof: We first prove (—). Let M | ¢[Z, Z]. Then M’ = ¢[r'(2), 7' (Z)]

by (3).
We now prove (). Let:
M’ ): (p[[fla Zl]v R [frv ZT]77T/<f)]
where f; € T for [ =1,...,r. Since 7'(z) = [const, 0], we then have:

(z1,...,2r,0...0) € 7(e), where:

—

e={(ug,...,ur,0...0) : M = p[f(1), 2]}

Hence e # (). Hence

—

\vi...0M = o[f(7),7)

where rng(f;) C H% for [ = 1,...,7. Hence M = ¥[7]. QED (8)
If i < n, then every ng') formula is E((]n). Hence by (8):
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(9)

(10)

(11)

(12)

If i < n then

7 M — 50 M’ in the pseudo interpretation.
2

We also get:

Let n < w. Then:

7' | Hyy : Hyy —s, Hy cofinally.

Proof: Let x € H,. We must show that « € 7/(a) for an a € H};. Let
x = [f,y], where f € I''. Let d = dom(f),a = rng(f). Then y € 7(d)
and:

/\ZEd<Z,O>E€

where

e = {{u,v)|f(u) € consty(v)}
= {(u, 0)[f(u) € a}.

This is a X statement about d, e. Hence the same statement holds of
7(d), m(e) in Hy,. Hence (z,0) € w(e). Hence [f,y] € 7'(a). QED (10)

(Note: (10) and (3) imply that 7' : M — ) M’ is the pseudo inter-
1

pretation, but this also follows directly from (8).)

Letting M = (J2, B) and M’ = (|M'|, A’, B') we define:

M; = (Hy,, AN H};, BN HY,), M = (H;, A" H;, B' N H;)
for i <n or i =n < w. Then each M; is acceptable. It follows that:

M] is acceptable.

Proof: If i = n, then 7' | M,, : M,, —x, M), cofinally by (3) and (10).
Hence M), is acceptable by §5 Lemma 2.5.5. If i < n, then «' | M; :
M; s M/ by (9). Hence M is acceptable since acceptability is a
II5 condition. QED (11)
We now examine the "correctness" of the pseudo interpretation. As a
first step we show:

Let i+1 <n. Let A C Hi1q be Egi) in the pseudo interpretation.
Then (H;t+1,A) is amenable.

Proof: Suppose not. Then there is A’ C H; 1 such that A’ is Egi) in
the pseudo interpretation, but (H;, A’) is not amenable. Let:

A'(z) < B'(,p)
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where B’ is Egi) in the pseudoo interpretation. For p € M’ we set:

A, =:{z|B'(z,p)}.

Let B be Egi)(M) by the same definition. For p € M we set:

Ap = {z[B(z, p)}.

Casel 1+1<n.

Then \/p\/ @™ A6 £ /1 0 A} holds in the pseudo in-

terpretation. This has the form: \/p\/ a'Tlp(p,a’*!) where

is H(ZH), hence ¥ in the pseudo interpretation. By (8) we
1 0

conclude that M = o(p,a’™!) for some p,a’™' € M. Hence

(HiH, A,) is not amenable, where A,, is Egz)(M).

Contradiction! QED (Case 1)

Case 2 Case 1 fails.

Then ¢ + 1 = n. Since 7’ takes H}, cofinally to H,. There
must be a € H}, such that w(a) N A" ¢ H,. From this we
derive a contradiction. Let A" = A} where p = [f,z]. Set:

B = {{z,w)|B(w, f(z))}. Then Bis 2" (M). Set: b= (dxa)nB,
where d = dom(f). Then b € Hy;. Define g : d = H}; by:

9(z) =1 ApxyNa = {z € al(z,z) € b}.

Then g € H};, since it is rudimentary in a,b € H};. Let p(u", v"™, w)

be the Eén) statement expressing
u= A, Nv" in M.
Then setting:

e={(v,0,w)|M = ¢[g(v),a, f(2)]}

we have:

/\U €d (v,0,v) €e.

But then the same holds of 7 (d),n(e) in H,. Hence (z,0,z2) €
m(e). Hence: [g,2] = Ajg N 7(a) € Hy.
Contradiction! QED (12)

On the other hand we have:

(13) Let i+1 < n. Let A C Hiyt! be Zgi)(M) in the parameter p such that

A¢ M. Let A" be (M) in #/(p) by the same £\’ (M) definition
in the pseudo interpretation. Then A’ N H;11 ¢ M.
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(14)

(15)

Proof: Suppose not. Then in M’ we have:
\/a/\v”l(viJrl €a+ A

This has the form \/ ap(a,m(p)) where ¢ is H(liﬂ) hence Z(()n). By (8)
it then follows that \/ ap(a,p) holds in M. Hence A € M.
Contradiction! QED (13)

Recall that for any acceptable M = (JZ, B) we can define p',, H, by:

a

P’ =

pt1 = the least p such that there is A which is
(M) with Anp ¢ M

H' = J,[A].

Hence by (11), (12), (13) we can prove by induction on 4 that:

Let ¢ < n. Then

() iy = pir Hipo = I,
(b) The pseudo interpretation is correct for formulae ¢, all of whose
variables are of type < 1.

By (9) we then have:

i M =@ M for i <n.

2
This means that if n = w, then 7’ is automatically ¥ *-preserving. If
n < w, however, it is not necessarily the case that H, = Hy,, — i.e.
the pseudo interpretation is not always correct. By (12), however we
do have:

pn < phy, (hence H, C H}}).
Using this we shall prove that 7’ is Z(()n)fpreserving. As a preliminary
we show:

Let n < w. Let ¢ be a E(()”) formula containing only variables of type
i <n. Let v}},...,v% be a good sequence for ¢. Let z1,..., 2, € M’
such that ; € H;, for { =1,...,r. Then M = ¢[z1,...,z,] holds in
the correct sense iff it holds in the pseudo interpretation.

Proof: (sketch)

Let Cy be the set of all such ¢ with: ¢ is Z‘,gl) for an i < n. Let C be the
closure of Cj under sentential operation and bounded quantifications
of the form Av"™ € w"yp, \/v™ € w"p. The claim holds for ¢ € Cj
by (15). We then show by induction on ¢ that it holds for ¢ € C. In
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passing from ¢ to A v"™ € w"p we use the fact that w™ is interpreted
by an element of H,. QED (17)

Since W///H]i\/[ C H; for i < n, we then conclude:
(18) 7 M —)Z(n) M.
0
It now remains only the show:
(19) [f, 2] = ='(f)(x).
Proof: Let f(z) = G(z,p) for x € dom(f), where G is Zgj) good for
aj <n. Let a =dom(f). Let U(u,v,w) be a good Egj) definition of
G. Set:
e = {{z,y, w)|M = V[f(z),idq(y), consty(w)}.

Then z € a — (z,2,0) € e. Hence the same holds of 7(a),w(e). But
x € m(a). Hence:

M' = V([f, ], [idq, 2], [constp, ]],
where [id,, 2| = z, [consty, 0] = 7'(p). Hence:
[f. 2] = G'(z,7'(p)) = 7' (f) (),
where G’ has the same 2\ definition. QED (19)

Lemma 2.7.20 is then immediate from (6), (18) and (19).
QED (Lemma 2.7.19)

As a corollary of the proof we have:

Lemma 2.7.21. Let (M’ ') be the E[(]n) liftup of (M,w). Then 7' is Zg)
preserving for i < mn.

Finally, we note that we have:

Lemma 2.7.22. Let n* D w such that ©* : M — ) M*. Then the E(()n)
0

liftup (M’ ') of (M, ) exists. Moreover there is a unique map o : M’ —>E(()n)

M* such that o | H' = id and on’ = 7*.

Proof: € is well founded, since:

(f,x)€(g,y) < 7 (f)(@) € 7 (9)(y)-

Thus (M’ 7') exists. But for Egn) formulae o = p(v', ..., vi) we have:
M= el (f1) (@), 7 (fr) ()]
— (z1,...,2n) € m(e)

o M* = ol (fi)(z1),. .., 7 (fr) ()]
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where:

e={(z1,.. ., 20)|M | o[fi(z1), ..., fr(2)]}

and (fj,x;) € I} forl =1,...,7. Hence thereisa E((]n)fpreserving embedding
o: M — M* defined by:

o(x'(f)(2) = " (f)(a) for (f,z) € I,

But o is the unique o : M’ —gm M* such that o  H = id and o7’ = 7%,
0
since, by the definition of 7/(f) and 7*(f) for f € '™ we then have:

o(w'(f)(x)) = 7*(f)(z) for x € m(dom(f)).
QED (Lemma 2.7.22)

We can improve the result by making stronger assumptions on the map m,
vor instance:

Lemma 2.7.23. Let (M*,7*) be the S\ liftup of (M, ). Letw* | pif! = id
and P(o Y)Y N M* € M. Then p},. =sup* ph,.

(n)

(Hence the pseudo interpretation is correct and 7* is ¥ preserving.)
Proof: Suppose not. Let p = sup w*//p% < piiy-- Set:
H"™ HM JAIVI o= JflM
Then H € M*. Let A be S(") (M) in p such that AN ph* ¢ M. Let:
Az < \/y”B(y”,x),
where B is 2(()71) in p. Let B* be Z((]n)(M*) in 7*(p) by the same definition.
Then . 3
7 VH™: (H", BN H") —y, (H,B* N H).
Then AN p"‘"1 AN p"+1 where:

A={z|\/ € HB*(y,2)}.

yTL
But A is Zén)(M*) in 7*(p) and H. Hence
Anpift = Anpit e (o) N M C M.

Contradiction! QED (Lemma 2.7.13)



