
Preliminaries

(1) Throughout the book we assume ZFC. We use "virtual classes", writing
{x|ϕ(x)} for the class of x such that ϕ(x). We also write:

{t(x1, . . . , xn)|ϕ(x1, . . . , xn)}, (where e.g.
t(x1, . . . , xn) = {y|ψ(y, x1, . . . , xn)})

for:

{y|
∨
x1, . . . , xn(y = t(x1, . . . , xn) ∧ ϕ(x1, . . . , xn))}

We also write

P(A) = {z|z ⊂ A}, A ∪B = {z|z ∈ A ∨ z ∈ B}
A ∩B = {z|z ∈ A ∧ z ∈ B},¬A = {z| /∈ A}

(2) Our notation for ordered n�tuples is 〈x1, . . . , xn〉. This can be de�ned
in many ways and we don't specify a de�nition.

(3) An n�ary relation is a class of n�tuples. The following operations are
de�ned for all classes, but are mainly relevant for binary relations:

dom(R) =: {x|
∨
y〈y, x〉 ∈ R}

rng(R) =: {y|
∨
x〈y, x〉 ∈ R}

R ◦ P = {〈y, x〉|
∨
z|〈y, z〉 ∈ R ∧ 〈z, x〉 ∈ P}

R�A = {〈y, x〉|〈y, x〉 ∈ R ∧ x ∈ A}
R−1 = {〈y, x〉|〈x, y〉 ∈ R}

We write R(x1, . . . , xn) for 〈x1, . . . , xn〉 ∈ R.

(4) A function is identi�ed with its extension or �eld � i.e. an n�ary
function is an n+ 1�ary relation F such that∧

x1 . . . xn
∧
z
∧
w((F (z, x1, . . . , xn) ∧ F (w, x1, . . . , xn))→

→ z = w)

F (x1, . . . , xn) then denotes the value of F at x1, . . . , xn.
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(5) "Functional abstraction" 〈tx1,...,xn |ϕ(x1, . . . , xn)〉 denotes the function
which is de�ned and takes value tx1,...,xn whenever ϕ(x1, . . . , xn) and
tx1,...,xn is a set:

〈tx1,...,xn |ϕ(x1, . . . , xn)〉 =:
{〈y, x1, . . . , xn〉|y = tx1,...,xn ∧ ϕ(x1, . . . , xn)},

where e.g. tx1,...,xn = {z|ψ(z, x1, . . . , xn)}.

(6) Ordinal numbers are de�ned in the usual way, each ordinal being identi-
�ed with the set of its predecessors: α = {ν|ν < α}. The natural num-

bers are then the �nite ordinals: 0 = ∅, 1 = {0}, . . . , n = {0, . . . , n−1}.

(7) A note on ordered n�tuples. A frequently used de�nition of ordered
pairs is:

〈x, y〉 =: {{x}, {x, y}}.

One can then de�ne n�tuples by:

〈x〉 =: x, 〈x1, x2, . . . , xn〉 =: 〈x1, 〈x1, . . . , xn〉〉.

However, this has the disadvantage that every n + 1�tuple is also an
n�tuple. If we want each tuple to have a �xed length, we could instead
identify the n�tuples with vecton of length n � i.e. functions with
domain n. This would be circular, of course, since we must have a
notion of ordered pair in order to de�ne the notion of "function". Thus,
if we take this course, we must �rst make a "preliminary de�nition" of
ordered pairs � for instance:

(x, y) =: {{x}, {x, y}}

and then de�ne:

〈x0, . . . , xn−1〉 = {(x0, 0), . . . , (xn−1, n− 1)}.

If we wanted to form n�tuples of proper classes, we could instead iden-
tify 〈A0, . . . , An−1〉 with:

{〈x, i〉|(i = 0 ∧ x ∈ A0) ∨ . . . ∨ (i = n− 1 ∧ x ∈ An−1)}.

(8) Overhead arrow notation. The symbol ~x is often used to donate a
vector 〈x1, . . . , xn〉. It is not surprising that this usage shades into what
I shall call the informal mode of overhead arrow notation. In this mode
~x simply stands for a string of symbols x1, . . . , xn. Thus we write f(~x)
for f(x1, . . . , xn), which is di�erent from f(〈x1, . . . , xn〉). (In informal
mode we would write the latter as f(〈~x〉).) Similarly, ~x ∈ A means that
each of x1, . . . , xn is an element of A, which is di�erent from 〈~x〉 ∈ A.
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We can, of course, combine several arrows in the same expression. For
instance we can write f(~g(~x)) for f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

Similarly we can write f(
−→
g(~x)) or f(~g(~x)) for

f(g1(x1,1, . . . , x1,p1), . . . , gm(xm,1, . . . , xm,pm)).

The precise meaning must be taken from the context. We shall often
have recourse to such abbreviations. To avoid confusion, therefore, we
shall use overhead arrow notation only in the informal mode.

(9) Amodel or structure will for us normally mean an n+1�tuple 〈D,A1, . . . , An〉
consisting of a domain D of individuals, followed by relations on that
domain. If ϕ is a �rst oder formula, we call a sequence v1, . . . , vn of
distinct variables good for ϕ i� every free variable of ϕ occurs in the se-
quence. If M is a model, ϕ a formula, v1, . . . , vn a good sequence for ϕ
and x1, . . . , xn ∈M , we write: M |= ϕ(v1, . . . , vn)[x1, . . . , xn] to mean
that ϕ becomes true in M if vi is interpreted by xi for i = 1, . . . , n.
This is the satisfaction relation. We assume that the reader knows how
to de�ne it. As usual, we often suppress the list of variables, writing
only M |= ϕ[x1, . . . , xn]. We may sometimes indicate the variables
being used by writing e.g. ϕ = ϕ(v1, . . . , vn).

(10) ∈�models. M = 〈D,E,A1, . . . , An〉 is an ∈�model i� E is the restric-
tion of the ∈�relation to D2. Most of the models we consider will be
∈�models. We then write 〈D,∈, A1, . . . , An〉 or even 〈D,A1, . . . , An〉
for 〈D,∈ ∩D2, A1, . . . , An〉. M is transitive i� it is an ∈�model and D
is transitive.

(11) The Levy hierarchy. We often write
∧
x ∈ yϕ for

∧
x(x ∈ y → ϕ),

and
∨
x ∈ yϕ for

∨
x(x ∈ y ∧ ϕ). Azriel Levy de�ned a hierarchy of

formulae as follows:

A formula is Σ0 (or Π0) i� it is in the smallest class Σ of formulae such
that every primitive formula is in Σ and

∧
v ∈ uϕ,

∨
v ∈ uϕ are in Σ

whenever ϕ is in Σ and v, u are distinct variables.

(Alternatively we could introduce
∧
v ∈ u,

∨
v ∈ u as part of the

primitive notation. We could then de�ne a formula as being Σ0 i� it
contains no unbounded quanti�ers.)

The Σn+1 formulae are then the formulae of the form
∨
vϕ, where ϕ

is Πn. The Πn+1 formulae are the formulae of the form
∧
vϕ when ϕ

is Σn.

If M is a transitive model, we let Σn(M) denote the set of realations
on M which are de�nable by a Σn formula. Similarly for Πn(M). We
say that a relation R is Σn(M)(Πn(M)) in parameters p1, . . . , pm i�

R(x1, . . . , xn)↔ R′(x1, . . . , xn, p1, . . . , pm)
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and R′ is Σn(M)(Πn(M)). Σ1(M) then denotes the set of relations
which are Σ1(M) in some parameters. Similarly for Π1(M).

(12) Kleene's equation sign. An equation 'L ' R' means: 'The left side is
de�ned if and only if everything on the right side is de�ned, in which
case the sides are equal'. This is of course not a strict de�nition and
must be interpreted from case to case.

F (~x) ' G(H1(~x), . . . ,Hn(~x)) obviously means that the function F is
de�ned at 〈x1, . . . , xn〉 i� each of the Hi is de�ned at 〈~x〉 and G is
de�ned at 〈H1(~x), . . . ,Hn(~x)〉, in which case equality holds.

The recursion schema of set theory says that, given a function G, ther
is a function F with:

F (y, ~x) ' G(y, ~x, 〈F (z, ~x)|z ∈ y〉).

This says that F is de�ned at 〈y, ~x〉 i� F is de�ned at 〈z, ~x〉 for all z ∈ y
and G is de�ned at 〈y, ~x, 〈F (z, ~x)|z ∈ y〉〉, in which case equality holds.

(13) By the recursion theorem we can de�ne:

TC(x) = x ∪
⋃
z∈x

TC(z)

(the transitive closure of x)

rn(x) = lub{rn(z)|z ∈ x}

(the rank of x).



Chapter 1

Trans�nite Recursion Theory

1.1 Admissibility

Some �fty years ago Kripke and Platek brought out about a wide ranging
generalization of recursion theory � which dealt with �e�ective� functions
and relations on ω � to trans�nite domains. This, in turn, gave the impetus
for the development of �ne structure theory, which became a basic tool of
inner model theory. We therefore begin with a discussion of Kripke and
Platek's work, in which ω is replaced by an arbitrary �admissible� structure.

1.1.1 Introduction

Ordinary recursion theory on ω can be developed in three di�erent ways. We
can take the notion of algorithm on basic, de�ning a recursive function on ω
to be one given by an algorithm. Since, however, we have no de�nition for the
general notion of algorithm, this approach involves de�ning a special class
of algorithms and then convincing ourselves that �Church's thesis� holds �
i.e. that every function generated by an algorithm is, in fact, generated by
one which lies in our class. Alternatively we can take the notion of calculus
on basic, de�ning an n�ary relation R on ω to be recursively enumerable
(r.e.) if for some calculus involving statements of the form �R(i1, . . . , in)�
(i1, . . . , in < ω), R is the set of tuples 〈i1, . . . , in〉 such that �R(i1, . . . , in)�
is provable. R is then recursive if both it and its complement are r.e. A
function de�ned on ω is recursive if it is recursive as a relation. But again,
since we have no general de�nition of calculus, this involves specifying a
special class of calculi and appealing to the appropriate form of Church's
thesis.
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A third alternative is to base the theory on de�nability , taking the r.e. re-
lation as those which are de�nable in elementary number theory by one of
a certain class of formulae. This approach has often been applied, but char-
acterizing the class of de�ning formula tends to be a bit unnatural. The
situation changes radically, however, if we replace ω by the set H = Hω of
heredetarily �nite sets. We consider de�nability over the structure 〈H,∈〉,
employing the familiar Levy hierarchy of set theoretic formulae:

Π0 = Σ0 =: formulae in which all quanti�ers are bounded

Σn+1 =: formulae
∨
xϕ where ϕ in Πn

Πn+1 =: formulae
∧
xϕ where ϕ in Σn.

We then call a relation on H r.e. (or H�r.e.) i� it is de�nable by a Σ1

formula. Recalling that ω ⊂ H it then turns out that a relation on ω is
H�r.e. i� it is r.e. in the classical sense. Moreover, there is an H�recursive
map π : H ↔ ω such that A ⊂ H is H�r.e. i� π′′A is r.e. in the classical
sense.

This suggests a very natural way of relativizing recursion theory to trans�nite
domains. Let N = 〈|N |,∈, A1, . . . , An〉 be any transitive structure. We �rst
de�ne:

De�nition 1.1.1. A relation on N is Σn(N) (in the parameters p1, . . . , pn ∈
N) i� it is N�de�nable (in ~p) by a Σn formula. It is ∆n(N) (in ~p) if both it
and its completement are Σn(N) (in ~p). It is Σn(N) i� it is Σn(N) in some
parameters. Similarly for ∆n(N).

Following our above example of N = 〈H,∈〉, it is natural to de�ne a relation
on N as being N�r.e. i� it is Σ1(N), and N�recursive i� it is ∆1(N). A
partial function F on N is N�r.e. i� it is N�r.e. as a relation. F is N�

recursive as a function i� it is N�r.e. and dom(F ) in ∆1(N).

(Note that Σ1(〈H,∈〉) = Σ1(〈H,∈〉), which will not hold for arbitrary N .)

However, this will only work for anN satisfying rather strict conditions since,
when we move to trans�nite structures N , we must relativize not only the
concepts �recursive� and �r.e.�, but also the concept ��nite�. In the theory of
H the �nite sets were simply the elements of H.

Correspondingly we de�ne:

u is N��nite i� u ∈ N.

But there are certain basic properties which we expect any recursion theory
to have. In particular:
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• If A is recursive and u is �nite, then A ∩ u is �nite.

• If u is �nite and F : u→ N is recursive, then F ′′u is �nite.

Those transitive structures N = 〈|N |,∈ A1, . . . , An〉 which yield a satis-
factory recursion theory are called admissible. An ordinal α is then called
admissible i� Lα is admissible. The admissible structures were character-
ized by Kripke and Platek as those trans�nite structures which satisfy the
following axioms:

(1) ∅, {x, y},∪x are sets

(2) The Σ0 axiom of subsets:

x ∩ {z|ϕ(u)} is a set

(where ϕ is any Σ0�formula)

(3) The Σ0 axiom of collection:∧
x ∈ u

∨
y ϕ(x, y)→

∨
v
∧
x ∈ u

∨
y ∈ v ϕ(x, y),

(where ϕ is any Σ0�formula).

Note Kripke�Platek set theory (KP) consists of the above axioms together
with the axoim of extensionality and the full axiom of foundation (i.e. for all
formulae, not just the Σ0 ones).

Note Although the de�nability approach is the one most often employed in
trans�nite recursion theory, the approaches via algorithms and calculi have
also been used to de�ne the class of admissible ordinals.

1.1.2 Properties of admissible structures

We now show that admissible structures satisfy the two criteria stated above.
In the following let M = 〈|M |,∈ Aa, . . . , An〉 be admissible.

Lemma 1.1.1. Let u ∈M . Let A be ∆1(M). Then A ∩ u ∈M .

Proof: Let Ax ↔
∨
yA0yx;¬Ax ↔

∨
yA1yx, where A0, A1 are Σ0(M).

Then
∧
x ∈ u

∨
y(A0yx ∨A1yx). Hence there is v ∈M such that∧

x ∈ u
∨
y ∈ v(A0yx ∨A1yx). QED

Before verifying the second criterion we prove:
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Lemma 1.1.2. M satis�es:∧
x ∈ u

∨
y1 . . . ynϕ(x, ~y)→

∨
u
∧
x ∈ u

∨
y1 . . . yn ∈ uϕ(x, ~y)

for Σ0�formulae ϕ.

Proof. Assume
∧
x ∈ u

∨
y1 . . . ynϕ(x, ~y). Then∧

x ∈ u
∨
w
∨
y1 . . . yn ∈ wϕ(x, ~y)︸ ︷︷ ︸

Σ0

.

Hence there is v′ ∈ M such that
∧
x ∈ u

∨
w ∈ v′

∨
y1 . . . yn ∈ wϕ(x, ~y).

Take v =
⋃
v′. QED (Lemma 1.1.2)

We now verify the second criterion:

Lemma 1.1.3. Let u ∈M,u ⊂ dom(F ), where F is a Σ1(M) funcion. Then
F ′′u ∈M .

Proof. Let y = F (x) ↔
∨
zF ′zyx, where F ′ is a Σ0(M) relation. Then∧

x ∈ u
∨
z, yF ′zyx. Hence there is v ∈M such that∧

x ∈ u
∨
z, y ∈ vF ′zyx. Hence F ′′u = v ∩ {y|

∨
x ∈ u

∨
z ∈ vF ′zxy}.

QED (Lemma 1.1.3)

Assuming the admissibility of M , we immediately get from Lemma 1.1.2:

Lemma 1.1.4. Let ϕ(y, ~x) be a Σ1�formula. Then
∨
yϕ(y, ~x) is uniformly

Σ1 in M .

Note �Uniformly� is a word which recursion theorists like to use. Here it
means thatM |=

∨
yϕ(y, ~x)↔ Ψ(~x) for a Σ1 formula Ψ which depends only

on ϕ and not on the choice of M .

Lemma 1.1.5. Let ϕ(y, ~x) be Σ1. Then
∧
y ∈ uϕ(y, ~x) is uniformly Σ1 in

M .

Proof. Let ϕ(y, ~x) =
∨
zϕ′(z, y, x), where ϕ′ is Σ0. Then∧

y ∈ uϕ(y, ~x)↔
∨
v
∧
y ∈ u

∨
z ∈ uϕ′(z, y, x)︸ ︷︷ ︸
Σ0

in M . QED (Lemma 1.1.5)

Lemma 1.1.6. Let ϕ0(~x), ϕ1(~x) be Σ1. Then (ϕ0(~x)∧ϕ1(~x)), (ϕ0(~x)∨ϕ1(~x))
are uniformly Σ1 in M .
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Proof. Let ϕi(~x) =
∨
yiϕ
′
i(yi, ~x) where without loss of generality y0 6= y1.

Then
(ϕ0(~x) ∧ ϕ1(~x))↔

∨
y0

∨
y1(ϕ′0(y0, x) ∧ ϕ′1(y1, x)).

Similarly for ∨. QED (Lemma 1.1.6)

Putting this together:

Lemma 1.1.7. Let ϕ1, . . . , ϕn be Σ1�formulae. Let Ψ be formed from ϕ1, . . . , ϕn
using only conjunction, disjunction, existence quanti�cation and bounded

universal quanti�cation. Then Ψ(x1, . . . , xn) in uniformly Σ1(M)

An immediate consequence of Lemma 1.1.7 is:

Lemma 1.1.8. R ⊂Mn in Σ1(M) in the parameter ∅ i� it is Σ1(M) in no

parameter.

Proof. Let R(~x)↔ R′(∅, ~x). Then

R(~x)↔
∨
z(R′(z, ~x) ∧

∧
y ∈ zy 6= y).

QED (Lemma 1.1.8)

Note R is in fact uniformly Σ1(M) in the sense that its Σ1 de�nition depends
only on the original Σ1 de�nition of R from ∅, and not on M .

Lemma 1.1.9. Let R(y1, . . . , yn) be a relation which is Σ1(M) in the the

parameter p. For i = 1, . . . , n let fi(x1, . . . , xm) be a partial function on M
which (as a relation) is Σ1(M) in p. Then the following relation is uniformly

Σ1(M) in p:

R(f1(~x), . . . , fn(~x))↔:
∨
y1 . . . yn(

n∧
i=1

yi = fi(~x) ∧R(~y)).

This follows by Lemma 1.1.7. (�Uniformly� again mean that the Σ1 de�nition
depends only on the Σ1 de�nition of R, f1, . . . , fn.)

Similarly:

Lemma 1.1.10. Let f(y1, . . . , yn), gi(x1, . . . , xn)(i = 1, . . . , n) be partial

functions which are Σ1(M) in p, then the function h(~x) ' f(g(~x)) is uni-

formly Σ1(M) in p.

Proof.

z = h(~x)↔
∨
y1 . . . yn(

n∧
i=1

yi = gi(~x) ∧ z = f(~y)).

QED (Lemma 1.1.10)
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Lemma 1.1.11. Let fi(~x) be a function which is Σ1(M) in p(i = 1, . . . , n).
Let Ri(~x)(i = 1, . . . , n) be mutually exclusive relations which are Σ1(M) in

p. Then the function

f(~x) ' fi(~x) if Ri(~x)

is uniformly Σ1(M) in p.

Proof.

y = f(~x)↔
n∨
i=1

(y = fi(~x) ∧Ri(~x)).

QED (Lemma 1.1.11)

Using these facts, we see that the restrictions of many standard set theoretic
functions to M are Σ1(M).

Lemma 1.1.12. The following functions are uniformly Σ1(M):

(a) f(x) = x, f(x) = ∪x, f(x, y) = x ∪ y, f(x, y) = x ∩ y, f(x, y) = x \ y
(set di�erence)

(b) f(x) = Cn(x), where C0(x) = x,Cn+1(x) = Cn(x) ∪
⋃
Cn(x)

(c) f(x1, . . . , xn) = {x1, . . . , xn}

(d) f(x) = i (where i < ω)

(e) f(x1, . . . , xn) = 〈x1, . . . , xn〉

(f) f(x) = dom(x), f(x) = rng(x), f(x, y) = x′′y, f(x, y) = x�y,
f(x) = x−1

(g) f(x1, . . . , xn) = x1 × x2 × . . .× xn

(h) f(x) = (x)ni where (〈z0, . . . , zn−1〉)ni = zi and (u)ni = ∅ in all other
cases

(i) f(x, z) = x[z] =


x(z) if x is a function
and z ∈ dom(x)
∅ otherwise.

Proof. We display sample proofs. (a) is straightforward. (b) follows by
induction on n. To see (c), y = {x1, . . . , xn} can be expressed by the Σ0�
statement

x1, . . . , xn ∈ y ∧
∧
z ∈ y(z = x1 ∨ . . . ∨ z = xn).
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(d) follows by induction on i, since

0 = ∅, i+ 1 = i ∪ {i}.

The proof of (e) depends on the precise de�nition of 〈x1, . . . xn〉. If we want
each tuple to have a unique length, then the following de�nition recommends
itself: First de�ne a notion of ordered pair by: (x, y) =: {{x}, {x, y}} Then
(x, y) is a Σ1 function. Then i�: 〈x1, . . . , xn〉 =: {(x1, 0), . . . , (xn, n − 1)},
the conclusion is immediate.

For (f) we display the proof that dom(x) is a Σ1 function. Note that
x, y ∈ Cn(〈x, y〉) for a su�cient n. But since every element of dom(x) is
a component of a pair lying in x, it follows that dom(x) ⊂ Cn(x) for a
su�cient n. Hence y = dom(x) can be expressed as:∧

z ∈ y
∨
w〈w, z〉 ∈ x ∧

∧
z, w ∈ Cn(x)(〈w, z〉 ∈ x→ z ∈ y).

To see (g), note that y = x1 × . . .× xn can be expressed by:∧
z1 ∈ x1 . . .

∧
zn ∈ xn〈z1, . . . , zn〉 ∈ y

∧
∧
w ∈ y

∨
z1 ∈ x1 . . .

∨
zn ∈ xnw = 〈z1, . . . , zn〉.

To see (h) note that, for su�ciently large m, y = (x)ni can be expressed by:∨
z0 . . . zn−1(x = 〈z0, . . . , zn−1〉 ∧ y = zi)
∨(y = ∅ ∧

∧
z0 . . . zn−1 ∈ Cm(x)x 6= 〈z0, . . . , zn−1〉)

(i) is similarly straightforward. QED (Lemma 1.1.12)

The recursion theorem of classical recursion theory says that if g(n,m) is
recursive on ω and f : ω → ω is de�ned by:

f(0) = k, f(n+ 1) = g(n, f(n)),

then f is recursive. The point is that the value of f at any n is determined by
its values at smaller numbers. Working with H instead of ω we can express
this in the elegant form:

Let g : ω ×H → ω be Σ1.
Then f : ω → ω is Σ1, where f(n) = g(n, f �n).

If we take g : H2 → H, then f will be Σ1 where f(x) = g(x, f �x) for x ∈ H.
We can even take g as being a partial function on H2. Then f is Σ1 where:

f(x) ' g(x, 〈f(z)|z ∈ x〉).



12 CHAPTER 1. TRANSFINITE RECURSION THEORY

(This means that f(x) is de�ned if and only if f(z) is de�ned for z ∈ x and
g is de�ned at 〈x, f �x〉, in which case the above equality holds.)

We now prove the same thing for an arbitrary admissibleM . If f is a partial
Σ1 function and x ⊂ dom(f), we know by Lemma 2.2.3 that f ′′x ∈M . But
then f �x ∈ M , since f∗(z) ' 〈f(z), z〉 is a Σ1 function with x ⊂ dom(f∗),
and f∗′′x = f � x. The recursion theorem for admissibles M = 〈|M |,∈
, A1, . . . , An〉 then reads:

Lemma 1.1.13. Let G(y, ~x, u) be a Σ1(M) function in the parameter p.
Then there is exactly one function F (y, ~x) such that

F (y, ~x) ' G(y, ~x, 〈F (z, ~x)|z ∈ y〉).

Moreover, F is uniformly Σ1(M) in p (i.e. the Σ1 de�nition depends only

on the Σ1 de�nition of G.)

Proof. We �rst show existence. Set:

Γ~x =: {f ∈M |f is a function ∧ dom(f) is
transitive ∧

∧
y ∈ dom(f)f(y) = G(y, ~x, f �y)}

Set F~x =
⋃

Γ~x;F = {〈y, ~x〉|y ∈ F~x. Then F is in Σ1(M) in p uniformly.

(1) F is a function.

Proof. Suppose not. Then for some ~x there are f, f ′ ∈ Γ~x, y ∈
dom(f) ∩ dom(f ′) such that f(y) 6= f ′(y). Let y be ∈�minimal with
this property. Then f � y = f ′ � y. But then f(y) = G(y, ~x, f � y) =
G(y, ~x, f ′,�y) = f ′(y). Contradiction! QED (1)

Hence F (y) = f(y) if y ∈ dom(f) and f ∈ Γ~x.

(2) Let 〈y, ~x〉 ∈ dom(F ). Then y ⊂ dom(F~x), 〈y, ~x, 〈F (z, ~x)|z ∈ y〉〉 ∈
dom(G) and

F (y, ~x) = G(y, ~x, 〈F (z, ~x)|z ∈ y〉).

Proof. Let y ∈ dom(f), f ∈ Γ~x. Then

F (y, ~x) = f(y) = G(y, ~x, f �x)
= G(y, ~x, 〈F (z, ~x)|z ∈ y〉).

QED (2)

(3) Let y ⊂ dom(F~x), 〈y, ~x, F~x �y〉 ∈ dom(G). Then y ∈ dom(F~x).

Proof. By our assumption:
∧
z ∈ y

∨
f(f ∈ Γ~x ∧ z ∈ dom(f)). Hence

there is u ∈M such that∧
z ∈ y

∨
f ∈ u(f ∈ Γ~x ∧ z ∈ dom(f)).
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Set: f ′ =
⋃

(u ∩ Γ~x). Then f ′ ∈ Γ~x and y ⊂ dom(f ′). Moreover
f ′ � y = F~x � y. Set f ′′ = f ′ ∪ {〈G(y, ~x, f ′ � y), y〉}. Then f ′′ ∈ Γ~x and
y ∈ dom(f ′′), where f ′′ ⊂ F~x. QED (3)

This proves existence. To show uniqueness, we virtually repeat the proof
of (1): Let F ∗ satisfy the same condition. Set F ∗~x (y) ' F ∗(y, ~x). Suppose
F ∗ 6= F . Then F ∗~x (y) 6' F~x(y) for some ~x, y. Let y be ∈�minimal ect.
F ∗~x (y) 6' F~x(y). Then F ∗~x �y = F~x �y. Hence

F ∗~x (y) ' G(y, ~x, 〈F ∗~x (z)|z ∈ y〉)
' G(y, ~x, 〈F~x(z)|z ∈ y〉)
' F~x(y).

Contradiction! QED (Lemma 1.1.13)

We recall that the transitive closure TC(x) of a set x is recursively de�nable
by: TC(x) = x∪

⋃
z∈x TC(z). Similarly, the rank rn(x) of a set is de�nable

by rn(x) = lub{rn(z)|z ∈ x}. Hence:
Corollary 1.1.14. TC, rn are uniformly Σ1(M).

The successor function sα = α+ 1 on the ordinals is de�ned by:

sx =

{
x ∪ {x} if x ∈ On
unde�ned if not

which is Σ1. The function α+ β is de�ned by:

α+ 0 = α
α+ sν = s(α+ ν)
α+ λ =

⋃
ν<λ α+ ν for limit λ.

This has the form:

x+ y ' G(y, x, 〈x+ z|z ∈ y〉).

Similarly for the function x · y, xy, . . . etc. Hence:
Corollary 1.1.15. The ordinal functions α + 1, α + β, αβ, . . . etc. are uni-

formly Σ1(M).

We note that there is an even more useful form of Lemma 1.1.13:

Lemma 1.1.16. Let G be as in Lemma 1.1.13. Let h : M → M be Σ1(M)
in p r.t. {〈x, y〉|x ∈ h(y)} is well founded. There is a unique f such that

F (y) ' G(y, ~x, 〈F (z, ~x)|x ∈ h(y)〉).

Moreover, F is uniformly1 Σ1(M) in p.

1(�uniformly� meaning, of course, that the Σ1 de�nition of F depends only on the Σ1

de�nition of G, h.)
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The proof is exactly like that of Lemma 1.1.13, using minimality in the
relation {〈x, y〉|x ∈ h(y)} in place of ∈�minimality. We now consider the
structure of �really �nite� sets in an admissible M .

Lemma 1.1.17. Let u ∈ Hω. The class u and the constant function

f(x) = u are uniformly Σ1(M).

Proof. By ∈�induction on u: Let u = {z1, . . . , zn}.

x ∈ u↔
n∨
i=1
x = zi

x = u↔
∧
y ∈ x y ∈ u ∧

n∧
i=1
zi ∈ x.

QED

x ∈ ω is clearly a Σ0 condition. But then:

Lemma 1.1.18. Let ω ∈ M . Then the constant function f(x) = ω is

uniformly Σ1(M).

Proof.

x = ω ↔ (
∧
z ∈ xz ∈ ω ∧ ∅ ∈ x ∧

∧
z ∈ xz ∪ {z} ∈ x)

(where 'z ∈ ω' is Σ0) QED

Lemma 1.1.19. The class Fin and the function f(x) = Pω(x) are uniformly

Σ1(M), where Fin = {x ∈M |x < ω},Pω(x) = P(x) ∩ Fin.

Proof.

x ∈ Fin ↔
∨
n ∈ ω

∨
ff : n↔ x

y = Pω(x) ↔
∧
u ∈ y(u ⊂ x ∧ u ∈ Fin) ∧ ∅ ∈ y∧

∧
∧
z ∈ x{z} ∈ y ∧

∧
u, v ∈ yu ∪ v ∈ y.

We must show that Pω(x) ∈ M . If ω /∈ M , then rn(x) < ω for all x ∈ M ,
Hence M = Hω is closed under Pω. If ω ∈M , there is Σ1(M) f de�ned by

f(0) = {{z}|z ∈ x}, f(n+ 1) = {u ∪ v|〈u, v〉 ∈ f(n)2}.

Then Pω(x) =
⋃
f ′′ω ∈M . QED (Lemma 1.1.19)

But then:

Lemma 1.1.20. If ω ∈M , then Hω ∈M and the constant function f(x) =
Hω is uniformly Σ1(M).

Proof. Hω ∈ M , since there is a Σ1(M) function g de�ned by g(0) =
∅, g(n + 1) = Pω(g(n)). Then Hω =

⋃
g′′ω ∈ M and f(x) = Hω is Σ1(M)

since g and the constant function ω are Σ1(M). QED (Lemma 1.1.20)
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1.1.3 The constructible hierarchy

We recall Gödel's de�nition of the constructible hierarchy 〈Lr|r ∈ On〉:

L0 = ∅
Lν+1 = Def(Lν)
Lλ =

⋃
ν<λ

Lν for limit λ,

where Def(u) is the set of all z ⊂ u which are 〈u,∈〉�de�nable in parameters
from u (taking Def(∅) = {∅}). (Note that if u is transitive, then u ⊂ Def(u)
and Def(u) is transitive.) Gödel's constructible universe is then L =:

⋃
ν∈On

Lν .

By fairly standard methods one can show:

Lemma 1.1.21. Let ω ∈M . Then the function f(u) = Def(u) is uniformly

Σ1(M).

We omit the proof, which is quite lengthy. It involves �arithmetizing� the
language of �rst order set theory by identifying formulae with elements of ω
or Hω, and then showing that the relevant syntactic and semantic concepts
are M�recursive.

By the recursion theorem we can of course conclude:

Corollary 1.1.22. Let ω ∈ M . The function f(α) = Lα is uniformly

Σ1(M).

The constructible hierarchy over a set u is de�ned by:

L0(u) = TC({u})
Lν+1(u) = Def(Lν(u))
Lλ(u) =

⋃
ν<λ

Lν(u) for limit λ.

Oviously:

Corollary 1.1.23. Let ω ∈ M . The function f(u, α) = Lα(u) is uniformly

Σ1(M).

The constructible hierarchy relative to classes A1, . . . , An is de�ned by:

L0[ ~A] = ∅
Lν+1[ ~A] = Def(Lν [ ~A], ~A)

Lλ[ ~A] =
⋃
ν<λ

Lν [ ~A] for limit λ,
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where Def(U,A1, . . . , An) is the set of all z ⊂ u which are
〈u,∈, A1 ∩ u, . . . , An ∩ u〉�de�nable in parameters from u.

Much as before we have:

Lemma 1.1.24. Let ω ∈M . Let A1, . . . , An be ∆1(M) in the parameter p.
Then the function f(u) = Def(u,A1, . . . , An) is uniformly Σ1(M) in p.

Corollary 1.1.25. Let ω ∈ M . Let A1, . . . , An be as above. Then the

function f(α) = Lα[ ~A] is uniformly Σ1(M) in p.

(In particular, ifM = 〈|M |,∈, A1, . . . , An〉. Then f(α) = Lα[ ~A] is uniformly
Σ1(M).)

(One could, of course, also de�ne Lα(u)[ ~A] and prove the corresponding
results.)

Any well ordering r of a set u induces a well ordering of Def(u), since each
element of Def(u) is de�ned over 〈u,∈〉 by a tuple 〈ϕ, x1, . . . , xn〉, where ϕ
is a formula and x1, . . . , xn are elements of u which interpret free variables
of ϕ. If u is transitive (hence u ⊂ Def(u)), we can also arrange that the well
ordering, which we shall call < (u, r), is an end extension of r. The function
< (u, r) is uniformly Σ1. If we then set:

<0= ∅, <ν+1=< (Lν , <ν)
<λ=

⋃
ν<λ

<ν for limit λ,

it follows that <ν is a well ordering of Lν for all ν. Moreover <α is an end
extension of <ν for ν < α.

Similarly, if A is Σ1(M) in p, there is a hierarchy <Aν (ν ∈ On∩M) such that
<Aν well orders Lν [A] and the function f(ν) =<Aν is Σ1(M) in p (uniformly
relative to the Σ1 de�nition of A).

By corollary 1.1.25 we easily get:

Lemma 1.1.26. Let M = 〈|M |,∈, A1, . . . , An〉 be admissible. Let α =
On∩M . Then 〈Lα[ ~A],∈ ~A〉 is admissible.

Proof: Set: L
~A
ν = 〈Lν [ ~A],∈, ~A〉. Axiom (1) holds trivially in L

~A
ν .

To verify the Σ0�axiom of subsets, let B be Σ0(L
~A
α ). Let u ∈ L ~A

α .

Claim u ∩B ∈ L ~A
α .
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Proof: Pick ν < α such that u ∈ L ~A
ν and B is Σ0 in parameters from L

~A
ν .

By Σ0�absoluteness we have:

u ∩B ∈ Def(L
~A
ν ) = L

~A
ν+1 ⊂ L

~A
α .

QED (Claim)

We now prove Σ0�collection. Let Rxy be a Σ0�relation. Let u ∈ L ~A
α such

that
∧
x ∈ u

∨
yRxy.

Claim
∨
v ∈ L ~A

α

∧
x ∈ u

∨
y ∈ vRxy.

For each x ∈ u let g(x) be the least ν < α such that x ∈ L ~A
ν . Then g is in

Σ1(M) and u ⊂ dom(g). Hence δ = sup g′′u < α and∧
x ∈ u

∨
y ∈ L ~A

δ Rxy.

QED (Lemma 1.1.26)

De�nition 1.1.2. Let α be an ordinal.

• α is admissible i� Lα is admissible

• α is admissible in A1, . . . , An ⊂ i� L
~A
α =: 〈Lα[ ~A],∈ ~A〉 is admissible

• f : αn → α is α�recursive (in ~A) i� f is Σ1(Lα)(Σ1(L
~A
α ))

• R ⊂ αn is r.e. (in ~A) i� R is Σ1(Lα(Σ1(L
~A
α )).

(Note The theory of α�recursive functions and relations on an admissible
α has been built up without references to Lα, using a formalized notion of
α�bounded calculus (Kripke) or α�bounded algorithm (Platek).

Similarly for α�recursiveness in A1, . . . , An, taking the Ai as "oracles")

A transitive structure M = 〈|M |,∈ ~A〉 is called strongly admissible i�, in
addition to the Kripke�Platek axioms, it satis�es the Σ1 axiom of subsets:

x ∩ {z|ϕ(z)} is a set (for Σ1 formulae ϕ).

Kripke de�nes the projectum δα of an admissible ordinal α to be the least
δ such that A ∩ δ /∈ Lα for some Σ1(M) set A. He shows that δα = α i�
α is strongly admissible. He calls α projectible i� δα < α. There are many
projectible admissibles � e.g. δα = ω if α is the least admissible greater
than ω. He shows that for every admissible α there is a Σ1(Lα) injection fα
of Lα into δα.
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The de�nition of projectum of course makes sense for any α ≥ ω. By
re�nements of Kripke's methods it can be shown that fα exists for every
α ≥ ω and that δα < α whenever α ≥ ω is not strongly admissible. We shall
� essentially � prove these facts in chapter 2 (except that, for technical
reasons, we shall employ a modi�ed version of the constructible hierarchy).

1.2 Primitive Recursive Set Functions

1.2.1 PR Functions

The primitive recursive set functions comprise a collection of functions

f : V n → V

which form a natural analogue of the primitive recursive number functions in
ordinary recursion theory. As with admissibility theory, their discovery arose
from the attempt to generalize ordinary recursion theory. These functions
are ubiquitous in set theory and have very attractive absoluteness properties.
In this section we give an account of these functions and their connection
with admissibility theory, though � just as in �1 � we shall suppress some
proofs.

De�nition 1.2.1. f : V n → V is a primitive recursive (pr) function i� it is
generated by successive application of the following schemata:

(i) f(~x) = xi (here ~x is x1, . . . , xn)

(ii) f(~x) = {xi, xj}

(iii) f(~x) = xi \ xj

(iv) f(~x) = g(h1(~x), . . . , hm(~x))

(v) f(y, ~x) =
⋃
z∈y

g(z, ~x)

(vi) f(y, ~x) = g(y, ~x, 〈f(z, ~x)|z ∈ y〉)

We also de�ne:

De�nition 1.2.2. R ⊂ V n is a primitive recursive relation i� there is a
primitive recursive function r such that R = {〈~x〉|r(~x) 6= ∅}.
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(Note It is possible for a function on V to be primitive recursive as a relation
but not as a function!)

We begin by developing some elementary consequences of these de�nitions:

Lemma 1.2.1. If f : V n → V is primitive recursive and k : n→ m, then g
is primitive recursive, where

g(x1, . . . , xm) = f(xk(1), . . . , xk(n)).

proof by (i), (iv).

Lemma 1.2.2. The following functions are primitive recursive

(a) f(~x) =
⋃
xj

(b) f(~x) = xi ∪ xj

(c) f(~x) = {~x}

(d) f(~x) = n, where n < ω

(e) f(~x) = 〈~x〉

Proof.

(a) By (i), (v), Lemma 1.2.1, since
⋃
xj =

⋃
z∈xj

z

(b) xi ∪ xj =
⋃
{xi, xj}

(c) {~x} = {x1} ∪ . . . ∪ {xm}

(d) By in induction on n, since 0 = x \ x, n+ 1 = n ∪ {n}

(e) The proof depends on the precise de�nition of n�tuple. We could for in-
stance de�ne 〈x, y〉 = {{x}, {x, y}} and 〈x1, . . . , xn〉 = 〈x1, 〈x2, . . . , xn〉〉
for n > 2.

If, on the other hand, we wanted each tuple to have a unique length, we
could call the above de�ned ordered pair (x, y) and de�ne:

〈x1, . . . , xn〉 = {(x1, 0), . . . , (xn, n− 1)}.

QED (Lemma 1.2.2)
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Lemma 1.2.3. (a) /∈ is pr

(b) If f : V n → V,R ⊂ V n are primitive recursive, then so is

g(~x) =

{
f(~x) if R~x
∅ if not

(c) R ⊂ V n is primitive recursive i� its characteristic functions XR is a

primitive recursive function

(d) If R ⊂ V n is primitive recursive so is ¬R =: V n \R

(e) Let fi : V n → V,Ri ⊂ V n be pr(i = 1, . . . ,m) where R1, . . . , Rn are

mutually disjoint and
n⋃
i=1
Ri = V n. Then f is pr where:

f(~x) = fi(x) when Ri~x.

(f) If Rz~x is primitive recursive, so is the function

f(y, ~x) = y ∩ {z|Rz~x}

(g) If Rz~x is primitive recursive so is
∨
z ∈ yRz~x

(h) If Ri~x is primitive recursive i = 1, . . . ,m), then so is
m∨
i=1
Ri~x

(i) If R1, . . . , Rn are primitive recursive relations and ϕ in a Σ0 formula,

then {〈~x〉|〈V,R1, . . . , Rn〉 |= ϕ[~x]} is primitive recursive.

(j) If f(z, ~x is primitive recursive, then so are:

g(y, ~x) = {f(z, ~x|z ∈ y}
g′(y, ~x) = 〈f(z, ~x)|z ∈ y〉

(k) If R(z, ~x) is primitive recursive, then so is

f(y, ~x) =


That z ∈ y such that Rz~x if exactly

one such z ∈ y exists;

∅ if not.

Proof.

(a) x /∈ y ↔ {x} \ y 6= ∅

(b) Let R~x↔ r(~x) 6= ∅. Then g(~x) =
⋃

z∈r(~x)

f(~x).
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(c) Xr(~x) =

{
1 if R~x
0 if not

(d) X¬R(~x) = 1 \XR(~x)

(e) Let f ′i(~x) =

{
fi(~x) if Ri~x
∅ if not

Then f(~x) = f ′i(~x) ∪ . . . ∪ f ′m(~x).

(f) f(y, ~x) =
⋃
z∈y

h(z, ~x), where:

h(z, ~x) =

{
{z} if Rz~x
∅ if not

(g) Let Py~x↔:
∨
z ∈ yRz~x. Then XP (~x) =

⋃
z∈y

XR(z, ~x).

(h) Let P~x↔
m∨
i=1
Ri~x. Then

XP (~x) = XR1 ∪ . . . ∪XRn(~x).

(i) is immediate by (d), (g), (h)

(j) g(y, ~x) =
⋃
z∈y
{f(z, ~x)}, g′(y, ~x) =

⋃
z∈y
{〈f(z, ~x), z〉}

(k) R′zu~x ↔: (z ∈ u ∧ Rz~x ∧
∧
z′ ∈ u(z 6= z′ → ¬Rz′~x)) is primitive

recursive by (i). But then:

f(y, ~x) =
⋃

(y ∩ {z|R′zy~x})

QED (Lemma 1.2.3)

Lemma 1.2.4. Each of the functions listed in �1 Lemma 1.1.12 is primitive

recursive.

The proof is left to the reader.

Note Up until now we have only made use of the schemata (i) � (v). This
will be important later. The functions and relations obtainable from (i)
� (v) alone are called rudimentary and will play a signi�cant role in �ne
structure theory. We shall use the fact that Lemmas 1.2.1 � 1.2.3 hold with
"rudimentary" in place of "primitive recursive".

Using the recursion schema (vi) we then get:

Lemma 1.2.5. The functions TC(x), rn(x) are primitive recursive.
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The proof is the same as before (�1 Corollary 1.1.14).

De�nition 1.2.3. f : Onn×V m → V is primitive recursive i� f ′ is primitive
recursive, where

f ′(~y, ~x) =

{
f(~y, ~x) if y1, . . . , yn ∈ On
∅ if not

As before:

Lemma 1.2.6. The ordinal function α+ 1, α+ β, α · β, αβ, . . . are primitive

recursive.

De�nition 1.2.4. Let f : V n+1 → V .

fα(α ∈ On) is de�ned by:

f0(y, ~x) = y
fα+1(y, ~x) = f(fα(y, ~x), ~x)
fλ(y, ~x) =

⋃
r<λ

f r(y, ~x) for limit λ.

Then:

Lemma 1.2.7. If f is primitive recursive, so is g(α, y, ~x) = fα(y, ~x).

There is a strengthening of the reursion schema (vi) which is analogue to �1
Lemma 1.1.16. We �rst de�ne:

De�nition 1.2.5. Let h : V → V be primitive recursive. h is manageable

i� there is a primitive recursive σ : V → On such that

x ∈ h(y)→ σ(x) < σ(y).

(Hence the relation x ∈ h(y) is well founded.)

Lemma 1.2.8. Let h be manageable. Let g : V n+2 → V be primitive recur-

sive. Then f : V n+1 → V is primitive recursive, where:

f(y, ~x) = g(y, ~x, 〈f(z, ~x)|z ∈ h(y)〉).

Proof. Let σ be as in the above de�nition. Let |x| = lub{|y||y ∈ h(x)} be
the rank of x in the relation y ∈ h(x). Then |x| ≤ σ(x). Set:

Θ(z, ~x, u) =
⋃
y∈u

h(y)⊂dom(z)

{〈g(y, ~x, z �h(y)), y〉|y ∈ u ∧ h(y) ⊂ dom(z)}.



1.2. PRIMITIVE RECURSIVE SET FUNCTIONS 23

By induction on α, if u is h�closed (i.e. x ∈ u→ h(x) ⊂ u), then:

Θα(∅, ~x, u) = 〈f(y, ~x)|y ∈ u ∧ |y| < α〉

Set h̃(v) = v ∪
⋃
z∈v

h(z). Then h̃α({y}) in h�closed for α ≥ |y|. Hence:

f(y, ~x) = Θσ(y)+1(∅, ~x, h̃σ(y)({y}))(y).

QED (Lemma 1.2.8)

Corresponding to �1 Lemma 1.1.17 we have:

Lemma 1.2.9. Let u ∈ Hω. The constant function f(x) = u is primitive

recursive.

Proof: By ∈�induction on u. QED

As we shall see, the constant function f(x) = ω is not primitive recursive,
so the analogue of �1 Lemma 1.1.18 fails.

In place of �1 Lemma 1.1.19 we get:

Lemma 1.2.10. The class Fin and the function f(x) = Pω(x) are primitive

recursive in the parameter ω.

Proof: Let f be primitive recursive such that f(0, x) = {{z}|z ∈ x},
f(n+ 1, x) = {u∪ v|〈u, v〉 ∈ f(n, x)2}. Then Pω(x) =

⋃
n∈ω

f(n, x). But then:

x ∈ Fin↔
∨
n ∈ ω

∨
g ∈

⋃
n<ω

Pnω(x× ω)g : n↔ x.

QED

Corollary 1.2.11. The constant function f(x) = Hω is primitive recursive

in the parameter ω.

Proof: Hω =
⋃
n<ω

Pnω(∅). QED

Corresponding to Lemma 1.1.21 of �1 we have:

Lemma 1.2.12. The function Def(u) is primitive recursive in the parameter

ω.

The proof involves carrying out the proof of �1 Lemma 1.1.21 (which we also
omitted) while ensuring that the relevant classes and functions are primitive
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recursive. We give not further details here (though �lling in the details can
be an arduous task). A fuller account can be found in [PR] or [AS].

Hence:

Corollary 1.2.13. The function f(α) = Lα is primitive recursive in ω.

Similarly:

Lemma 1.2.14. The function f(α, x) = Lα(x) is primitive recursive in ω.

Lemma 1.2.15. Let A ⊂ V be primitive recursive in the parameter p. Then
f(α) = LAα is primitive recursive in p.

One can generalize the notion primitive recursive to primitive recursive in

the class A ⊂ V (or in the classes A1, . . . , An ⊂ V ).

We de�ne:

De�nition 1.2.6. Let A1, . . . , An ⊂ V . The function f : V n → V is
primitive recursive in A1, . . . , An i� it is obtained by successive applications
of the schemata (i) � (vi) together with the schemata:

f(x) = XAi(x)(i = 1, . . . , n).

A relation R is primitive recursive in A1, . . . , An i�

R = {〈~x〉|f(~x) 6= 0}

for a function f which is primitive recursive in A1, . . . , An.

It is obvious that all of the previous results hold with "primitive recursive in
A1, . . . , An" in place of "primitive recursive".

By induction on the de�ning schemata of f we can show:

Lemma 1.2.16. Let f be primitive recursive in A1, . . . , An, where each

Ai is primitive recursive in B1, . . . , Bm. Then f is primitive recursive in

B1, . . . , Bm.

The proof is by induction on the de�ning schemata leading from A1, . . . , An
to f . The details are left to the reader. It is clear, however, that this proof is
uniform in the sense that the schemata which give in f from B1, . . . , Bm are
not dependent on B1, . . . , Bm or A1, . . . , An, but only on the schemata which
lead from A1, . . . , An to f and the schemata which led from B1, . . . , Bm to
Ai(i = 1, . . . , n).

This will be made more precise in �1.2.2
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1.2.2 PR De�nitions

Since primitive recursive functions are proper classes, the foregoing discus-
sion must ostensibly be carried out in second order set theory. However, we
can translate it into ZF by talking about primitive recursive de�nitions. By
a primitive recursive de�nition we mean a �nite sequence of equations of the
form (i) � (vi) such that:

• The function variable on the left side does not occur in a previous
equation in the sequence

• every function variable on the right side occurs previously on the left
side with the same number of argument places.

We assume that the language in which we write these equation has been
arithmetized � i.e. formulae, terms, variables etc. have been identi�ed in a
natural way with elements of ω (or at least Hω).

Every primitive recursive de�nition s de�nes a function Fs. If s = 〈s0, . . . , sn−1〉,
then Fs = Fn−1

s , where F is interprets the leftmost function variable of si.
This is de�ned in a straightforward way. If e.g. si is "f(y, ~x) =

⋃
z∈y

g(z, ~x)"

and g was leftmost in sj , then we get

F i(y, ~x) =
⋃
z∈y

F j(z, ~x).

Let PD be the class of primitive recursive de�nitions. In order to de�ne
{〈x, s〉|s ∈ PD ∧ x ∈ Fs} in ZF we proceed as follows:

Let s = 〈s0, . . . , sn−1〉 ∈ PD. Let M be any admissible structure. By
induction we can then de�ne 〈F i,Ms |i < n〉 where F is a function on Mni (ni
being the number of argument places). By admissibility we know that F is
exists and is de�ned on all ofMni . We then set: FMs = Fn−1,M

s . This de�nes
the set 〈FMi |s ∈ PD〉. If M ⊆ M ′ and M ′ is also admissible, it follows by
an emy induction on i < n that F i,M = F i,M

′
�M . Hence FMs ⊂ FM

′
s . We

can then set:
Fs =

⋃
{FMs |M is admissible}.

Note that by �1, each FMs has a uniform Σ1 de�nition ϕs which de�nes FMs
over every admissible M . It follows that ϕs de�nes Fs in V . Thus we have
won an important absoluteness result: Every primitive recursive function has
a Σ1 de�nition which is absolute in all inner models, in all generic extensions
of V , and indeed, in all admissible structures
M = 〈|M |,∈〉. This absoluteness phenomenon is perhaps the main reason
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for using the theory of primitive recursive functions in set theory. Carol
Karp was the �rst to notice the phenomenon � and to plumb its depths.
She proved results going well beyond what I have stated here, showing for
instance that the canonical Σ1 de�nition can be so chosen, that Fs �M is the
function de�ned over M by ϕs whenever M is transitive and closed under
primitive recursive function. She also improved the characterization of such
M : Call an ordinal α nice if it is closed under each of the function:

f0(α, β) = α+ β; f1(α, β) = α · β, f2(α, β) = αβ . . . etc.

(More precisely: fi+1(α, β) = f̃βi (α) for i ≥ 1, where f̃i(α) = fi(α, α), gβ(α)
is de�ned by: g0(α) = α, gβ+1(α) = g(gβ(α)), gλ(α) = sup

v<λ
gv(α) for limit λ.)

She showed that Lα is primitive recursively closed i� α is nice. Moreover,
Lα[A1, . . . , An] is closed under functions primitive recursive in A1, . . . , An i�
α is nice.

Primitive recursiveness in classes A1, . . . , An can also be discussed in terms of
primitive recursive de�nitions. To this end we appoint new designated func-
tion variable ȧi(i = 1, . . . , n), which will be interpreted by XAi(i = 1, . . . , n).
By a primitive recursive de�nition in ȧ1, . . . , ȧn we mean a sequence of equa-
tion having either the form (i) � (vi), in which ȧ1, . . . , ȧn do not appear, or
the form

(*) f(x1, . . . , xp) = ȧi(xj)(i = 1, . . . , n, j = 1, . . . , p)

We impose our previous two requirements on all equations not of the form
(*).

If s = 〈s0, . . . , sn−1〉 is a pr de�nition in ȧ1, . . . , ȧn, we successively de�ne

F i,A1,...,An
s (i < n) as before, setting F i,

~A
s (x1, . . . , xp) = XAi(xj) if si has the

form (*). We again set F
~A
s = Fn−1, ~A

s . The fact that {〈x, s〉|x ∈ F
~A
s } is

uniformly 〈V,∈, A1, . . . , An〉 de�nable is shown essentially as before:

Given an admissibleM = 〈|M |,∈, a1, . . . , an〉 we de�ne F i,Ms , FMs = Fn−1,M
s

as before, restricting to M . The existence of the total function F i,Ms follows
as before by admissibility. Admissibility also gives a canonical Σ1 de�nition
ϕs such that

y = FMs (~x)↔M |= ϕs[y, ~x].

(Thus FMs is uniformly Σ1 regardless of M .) If M,M ′ are admissibles of
the same type and M ⊆ M ′ (i.e. M is structurally included in M ′), then
FMs = FM

′
s �M . Thus we can let FA1,...,Ans be the union of all FMs such

that M = 〈|M |,∈, A1 ∩ |M |, . . . , An ∩ |M |〉 is admissible. ϕs then de�nes

F
~A
s over 〈V, ~A〉. (Here, Karp re�ned the construction so as to show that



1.3. ILL FOUNDED ZF− MODELS 27

F
~A
s �M = FMs whenever M = 〈|M |,∈, A1 ∧ |M |, . . . , An ∩ |M |〉 is transitive

and closed under function primitive recursive in A1, . . . , An. It can also
be shown that M = 〈|M |,∈, a1, . . . , an〉 is closed under functions primitive
recursive in a1, . . . , an i� |M | is primitive recursive closed andM is amenable,
(i.e. x ∩Ai ∈M for all x ∈M , v = 1, . . . , n).

A full account of these results can be found in [PR] or [AS].

We can now state the uniformity involved in Lemma 2.2.19: Let Ai ⊂
V be primitive recursive in B1, . . . , Bn with primitive recursive def si in
b1, . . . , bm(i = 1, . . . ,m). Let f be primitive recursive in A1, . . . , An with
primitive recursive de�nition s in ȧ1, . . . , ȧn. Then f is primitive recursive
in B1, . . . , Bn by a primitive recursive de�nition s′ in ḃ1, . . . , ḃm. s

′ is uniform
in the sense that it depends only on s1, . . . , sn and s, not on B1, . . . , Bm. In
fact, the induction on the schemata in s implicitly describes an algorithm
for a function

s1, . . . , sm, s 7→ s′

with the following property: Let B1, . . . , Bm be any classes. Let si de�ne gi
from ~B(i = 1, . . . , n). Set: Ai = {x|gi(x) 6= 0} in i = 1, . . . , n. Let f be the
function de�ned by s from ~A. Then s′ de�nes f from ~B.

Note 〈Hω,∈〉 is an admissible structure; hence Fs �Hω = fHωs . This shows
that the constant function ω is not primitive recursive, since ω /∈ Hω. It
can be shown that f : ω → ω is primitive recursive in the sense of ordinary
recursion theory i�

f∗(x) =

{
f(x) if x ∈ ω
0 if not

is primitive recursive over Hω. Conversely, there is a primitive recursive map
σ : Hω ↔ ω such that f : Hω → Hω is primitive recursive over Hω i� σfσ−1

is primitive recursive in sense of ordinary recursion theory.

1.3 Ill founded ZF− models

We now prove a lemma about arbitrary (possibly ill founded) models of
ZF− (where the language of ZF− may contain predicates other than ∈).
Let A = 〈a,∈

A
, B1, . . . , Bn〉 be such a model. For X ⊂ A we of course

write A|X = 〈X,∈
A
∩X2, . . .〉. By the well founded core of A we mean the

set of all v ∈ A such that ∈
A
∩C(x)2 is well founded, where C(x) is the

closure of {x} under ∈A. Let wfc(A) be the restriction A|C of A to its
well founded core C. Then wfc(A) is a well founded structure satisfying
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the axiom of extensionality, and is, therefore, isomorphic to a transitive
structure. Hence A is isomorphic to a structure A′ such that wfc(A′) is
transitive (i.e. wfc(A′) = 〈A′,∈,m〉 where A′ is transitive). We call such A′
grounded , de�ning:

De�nition 1.3.1. A = 〈A,∈A, . . .〉 is grounded i� wfc(A) is transitive.

(Note Elsewhere we have called these models "solid" instead of "grounded".
We avoid that usage here, however, since solidity � in quite another sense
� is an important concept in inner model theory.)

By the argument just given, every consistent set of sentences in ZF− has a
grounded model. Clearly

(1) ω ⊂ wfc(A) if A is grounded.

For any ZF− model A we have:

(2) If x ∈ A and {z|z ∈A x} ⊂ wfc(A), then x ∈ wfc(A).

Proof: C(x) = {x} ∪
⋃
{C(z)|z ∈A x}. QED

By Σ0�absoluteness we have:

(3) Let A be grounded. Let ϕ be Σ0 and let x1, . . . , xn ∈ wfc(A). Then

wfc(A) |= ϕ[~x]↔ A |= ϕ[~x].

By ∈�induction on x ∈ wfc(A) it follows that the rank function is
absolute:

(4) rn(x) = rnA(x) for x ∈ wfc(A) if A is grounded.

The converse also holds:

(5) Let rnA(x) ∈ wfc(A). Then x ∈ wfc(A).

Proof: Let r = rnA(x). Then r is an ordinal by (3). Assume that r is the
least counterexample. Then rnA(z) < r for z ∈A x. Hence {z|z ∈A x} ⊂
wfc(A) and x ∈ wfc(A) by (2).

Contradiction! QED

We now prove:
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Lemma 1.3.1. Let A be grounded. Then wfc(A) is admissible.

Proof: Axiom (1) and axiom (2) (Σ0�subsets) follow trivially from (3). We
verify the axiom of Σ0 collection. Let R(x, y) e Σ0(wfc(A)). Let u ∈ wfc(A)
such that

∧
x ∈ u

∨
yR(x, y). It su�ces to show:

Claim:
∨
v
∧
x ∈ u

∨
y ∈ vR(x, y).

Let R′ be Σ0(A) by the same de�nition in the same parameters as R. Then
R = R′∩wfc(A)2 by (3). If A = wfc(A), there is nothing to prove, so suppose
not. Then there is r ∈ OnA such that r /∈ wfc(A). Hence

A |= rn(y) < r for all y ∈ wfc(A)

by (4). Hence there is an r ∈ OnA such that

(6)
∧
x ∈ u

∨
y(R′(x, y) ∧ A |= rn(y) < r)

Since A models ZF−, there must be a least such r. But then:

(7) r ∈ wfc(A).

Since by (2) there would otherwise be an r′ such that A |= r′ < r and
r′ /∈ wfc(A). Hence (6) holds for r′, contradicting the minimality of r.

QED (7)

But there is w such that

(8)
∧
x ∈ u

∨
y ∈ w(R′(x, y) ∧ rn(y) < r).

Let A |= v = {y ∈ w| ∧ rn(y) < r}. Then rnA(v) ≤ r. Hence rnA(v) ∈
wfc(A) and v ∈ wfc(A) by (5). But:∧

x ∈ u
∨
y ∈ vRxy.

QED (Lemma 1.3.1)

As immediate corollaries we have:

Corollary 1.3.2. Let δ = On∩wfc(A). Then Lδ(u) is admissible whenever

u ∈ wfc(A).

Corollary 1.3.3. LAδ = 〈Lδ[A], A ∩ Lδ[A]〉 is admissible whenever A ∈
Σω(A) (since 〈A, A〉 is a ZF− model.
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Note It is clear from the proof of lemma 1.3.1 that we can replace ZF− by
KP (Kripke�Platek set theory). In this form lemma 1.3.1 is known as Ville's
Lemma.

1.4 Barwise Theory

Jon Barwise worked out the syntax and model theory of certain in�nitary
(butM��nite) languages in countable admissible structuresM . In so doing,
he created a powerful and �exible tool for set theory, which we shall utilize
later in this book. In this chapter we give an introduction to Barwise's work.

1.4.1 Syntax

Let M be admissible. Barwise developed a �rst order theory in which ar-
bitrary M��nite conjunction and disjunction are allowed. The predicates,
however, have only a (genuinely) �nite number of argument places and there
are no in�nite strings of quanti�ers. In order that the notion "M��nite"
have a meaning for the symbols in our language, we must "arithmetize" the
language � i.e. identify its symbols with objects inM . There are many ways
of doing this. For the sake of de�nitness we adopt a speci�c arithmetization
of M��nitary �rst order logic:

Predicates: For each x ∈ M and each n such that 1 ≤ n < ω we appoint
an n�ary predicate Pnx =: 〈0, 〈n, x〉〉.

Constants: For each x ∈M we appoint a constant cx =: 〈1, x〉.

Variables: For each x ∈M we appoint a variable vx =: 〈2, x〉.

Note The set of variables must be M�in�nite, since otherwise a single for-
mula might exhaust all the variables.

We let P 2
0 be the identity predicate =̇ and also reserve P 2

1 as the ∈�predicate
(∈̇).

By a primitive formula we mean Pt1 . . . tn =: 〈3, 〈P, t1, . . . , tn〉〉 where P is
an n�ary predicate and t1, . . . , tn are variables or constants.
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We then de�ne:

¬ϕ =: 〈4, ϕ〉, (ϕ ∨ ψ) =: 〈5, 〈ϕ,ψ〉〉,

(ϕ ∧ ψ) =: 〈6, 〈ϕ,ψ〉〉, (ϕ→ ψ) =: 〈7, 〈ϕ,ψ〉〉,

(ϕ↔ ψ) =: 〈8, 〈ϕ,ψ〉〉,
∧
vϕ = 〈9, 〈v, ϕ〉〉,∨

vϕ = 〈10, 〈v, ϕ〉〉.

The in�nitary conjunctions and disjunctions are∧∧
f =: 〈11, f〉,

∨∨
f =: 〈12, f〉.

The set Fml of �rst order M�formulae is then the smallest set X which
contains all primitive formulae, is closed under ¬,∧,∨,→,↔, and such that

• If v is a variable and ϕ ∈ X, then
∧
vϕ ∈ X and

∨
vϕ ∈ X.

• If f = 〈ϕi|i ∈ I〉 ∈ M and ϕi ∈ X for i ∈ I, then
∧∧

f ∈ X and∨∨
f ∈ X.

(In this case we also write:∧∧
i∈I

ϕi =:
∧∧

f,
∨∨
i∈I

ϕi =:
∧∧

f.

If B is a set of formulae we may also write:
∧∧

B for
∧∧
ϕ∈B

ϕ.)

Proof: It turns out that the usual syntactical notions are ∆1(M), includ-
ing: Fml, Const (set of constants), V bl (set of variables), Sent (set of all
sentences), as are the functions:

Fr(ϕ) = The set of free variables in ϕ
ϕ(v/t) ' the result of replacing occurences of the variable v by t (where
t ∈ V bl∪Const), as long as this can be done without a new occurence
of t being bound by a quanti�er in ϕ (if t is a variable).

That V bl, Const are ∆1 (in fact Σ0) is immediate. The characteristic func-
tion X of Fml is de�nable by a recursion of the form:

X(x) = G(x, 〈X(z)|z ∈ TC(x))

where G : M2 →M is ∆1. (This is an instance of the recursion schema in �1
Lemma 1.1.16. We are of course using the fact that any proper subformula
of ϕ lies in TC(ϕ).)
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Now let h(ϕ) be the set of immediate subformulae of ϕ (e.g. h(¬ϕ) = {ϕ},
h(
∧∧
i∈I
ϕi) = {ϕi|i ∈ I}, h(

∧
vϕ) = {ϕ} etc.) Then h satis�es the condition in

�1 Lemma 1.1.16. It is fairly easy to see that

Fr(ϕ) = G(ϕ, 〈F (x)|x ∈ h(ϕ)〉)

where G is a Σ1 function de�ned on Fml. Then Sent = {ϕ|Fr(ϕ) = ∅}.

To de�ne ϕ(v/t) we �rst de�ne it on primitive formulae, which is straightfor-
ward. We then set:

(ϕ ∧ ψ)(v/t) ' (ϕ(v/t) ∧ ψ(v/t)) (similarly for ∧,→,↔)

¬ϕ(v/t) ' ¬(ϕ(v/t))

(
∧∧
i∈I
ϕi)(

v/t) '
∧∧
i∈I

(ϕi(
v/t)) similarly for

∨∨
.

(
∧
uϕ)(v/t) '


∧
uϕ if u = v∧
u(ϕ(v/t)) if u 6= v, t

otherwise unde�ned
(similarly for

∨
)

This has the form:

ϕ(v/t) ' G(ϕ, v, t〈X(v/t)|X ∈ h(ϕ)〉),

where G is Σ1(M). The domain of the function f(ϕ, v, t) = ϕ(v/t) is ∆1(M),
however, so f is M�recursive.

(We can then de�ne:

ϕ(v1,...,vn/t1, . . . , tn) = ϕ(v1/w1) . . . (vn/wn)(w1/t1) . . . (wn/tn)

where v1, . . . , vn is a sequence of distinct variables and w1, . . . , wn is any
sequence of distinct variables which are di�erent from v1, . . . , vn, t1, . . . , tn
and do not occur bound or free in ϕ. We of cours follow the usual conventions,
writing ϕ(t1, . . . , tn) for vp(v1,...,vn/t1, . . . , tn), taking v1, . . . , vn as known.)

M��nite predicate logic has the axioms:

• all instances of the usual propositional logic axiom schemata (enough
to derive all tautologies with the help of modus ponens).

•
∧∧
i∈U

ϕi → ϕj , ϕj →
∨∨
i∈U

ϕi (j ∈ U ∈M)

•
∧
xϕ→ ϕ(x/t), ϕ(x/t)→

∨
xϕ
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• x=̇y → (ϕ(x)↔ ϕ(y))

The rules of inference are:

• ϕ,ϕ→ψ
ψ (modus ponens)

• ϕ→ψ
ϕ→

∧
xψ if x /∈ Fr(ϕ)

• ψ→ϕ∨
xψ→ϕ if x /∈ Fr(ϕ)

• ϕ→ψi(i∈u)
ϕ→

∧∧
ψi

(u ∈M)

• ψi→ϕ(i∈u)∨∨
ψi→ϕ (u ∈M)

We say that ϕ is provable from a set of sentences A i� ϕ is in the smallest set
which contains A and the axioms and is closed under the rules of inference.
We write A ` ϕ to mean that ϕ is provable from A. ` ϕ means the same as
∅ ` ϕ.

However, this de�nition of provability cannot be stated in the 1st order lan-
guage of M and rather misses the point which is that a provable formula
should have an M��nite proof. This, as it turns out, will be the case when-
ever A is Σ1(M). In order to state and prove this, we must �rst formalize the
notion of proof. Because we have not assumed the axiom of choice to hold
in our admissible structure M , we adopt a somewhat unorthodox concept of
proof:

De�nition 1.4.1. By a proof from A we mean a sequence 〈pi|i < α〉 such
that α ∈ On and for each i < α, pi ⊂ Fml and whenever ψ ∈ pi, then either
ψ ∈ A or ψ is an axiom or ψ follows from

⋃
h<i

pn by a single application of

one of the rules.

De�nition 1.4.2. p = 〈pi|i < α is a proof of ϕ from A i� p is a proof from
A and ϕ ∈

⋃
i<α

pi.

(Note that this de�nition does not require a proof to be M��nite.)

It is straightforward to show that ϕ is provable i� it has a proof. However,
we are more interested in M��nite proofs. If A is Σ1(M) in a parameter
q, it follows easily that {p ∈ M |p is a proof from A} is Σ1(M) in the same
parameter. A more interesting conclusion is:

Lemma 1.4.1. Let A be Σ1(M). Then A ` ϕ i� there is an M��nite proof

of ϕ from A.
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Proof: (←) trivial. We prove (→)

Let X = the set of ϕ such that there is p ∈M which proves ϕ from A.

Claim: {ϕ|A ` ϕ} ⊂ X.

Proof: We know that A ⊂ X and all axioms lie in X. Hence it su�ces to
show that X is closed under the rules of proof. This must be demonstrated
rule by rule. As an example we show:

Claim: Let ϕ→ ψi be in X for i ∈ u. Then ϕ→
∧∧
i∈U

ϕ ∈ X.

Proof: Let P (p, ϕ) mean: p is a proof of ϕ from A. Then P is Σ1(M). We
have assumed:

(1) ∧i ∈ u
∨
p P (p, ϕ→ ψi).

Now let P (pi, x)↔
∨
zP ′(z, pi, x) where P ′ is Σ0. We than have:

(2)
∧
i ∈ u

∨
p
∨
zP ′(z, p, ϕ→ ψi).

Hence there is v ∈M with:

(3)
∧
i ∈ u

∨
p, z ∈ vP ′(z, p, ϕ→ ψi).

Set: w = {p ∈ v|
∨
i ∈ u

∨
z ∈ vP ′(z, p, ϕ→ ψi)}

Set: α =
⋃
p∈w

dom(p). For i < α set:

qi =
⋃
{pi|p ∈ w ∧ i ∈ dom(p)}

Then q = 〈qi|i < α〉 ∈M is a proof.

But then q∩{
∧∧
i∈U

ψi} is a proof of
∧∧
i∈U

ψi. Hence
∧∧
i∈U

ψi ∈ X.

QED (Lemma 1.4.1)

From this we get the M��niteness lemma:

Lemma 1.4.2. Let A be Σ1(M). Then A ` ϕ i� there is a ⊂ A such that

a ∈M and a ` ϕ.

Proof: (←) is trivial. We prove (→). Let p ∈ M be a proof of ϕ from A.
Set:

a = the set of ψ such that for some i ∈ dom(p), ψ ∈ pi and ψ is neither an
axiom nor follows from

⋃
I<i

pi by an application of a single rule.



1.4. BARWISE THEORY 35

Then a ⊂ A, a ∈M , and p is a proof of ϕ from a. QED (Lemma 1.4.2)

Another consequence of Lemma 1.4.1 is:

Lemma 1.4.3. Let A be Σ1(M) in q. Then {ϕ|A ` ϕ} is Σ1(M) in the

same parameter (uniformly in the Σ1 de�nition of A).

Proof: {ϕ|A ` ϕ} = {ϕ|
∨
p ∈ m p proves ϕ from A}.

Corollary 1.4.4. Let A be Σ1(M) in q. Then "A is consistent" is Π1(M)
in the same parameter (uniformly in the Σ1 de�nition of A).

"p proves ϕ from u" is uniformly Σi(M). Hence:

Lemma 1.4.5. {〈u, ϕ〉|u ∈ m ∧ u ` ϕ} is uniformly Σ1(m).

Corollary 1.4.6. {〈u ∈M |u is consitent} is uniformly Π1(m).

Note. Call a proof p strict i� P i = 1 for i ∈ dom(p). This corresponds
to the more usual notion of proof. If M satis�es the axiom of choice in the
form: Every set is enumerable by an ordinal, then Lemma 1.4.1 holds with
"strict proof" in place of "proof". We leave this to the reader.

1.4.2 Models

We will not normally employ all of the predicates and constants in our M�
�nitary �rst order logic, but cut down to a smaller set of symbols which we
intend to interpret in a model. Thus we de�ne a language to be a set L of
predicates and constants. By a model of L we mean a structure:

A = 〈|A|, 〈tA|t ∈ L〉〉

such that |A| 6= ∅, PA ⊂ |A|n whenever P is an n�ary predicate, and cA ∈ |A|
whenever c is a constant. By a variable assignment we mean a map of f of
the variables into A. The satisfaction relation A |= ϕ[f ] is de�ned in the
usual way, where A |= [f ] means that the formula ϕ becomes true in A if
the free variables of ϕ are interpreted by the assignment f . We leave the
de�nition to the reader, remarking only that:

A |=
∧∧
i∈u
ϕi[f ]↔

∧
i ∈ u A |= ϕi[f ]

A |=
∨∨
i∈u
ϕi[f ]↔

∨
i ∈ u A |= ϕi[f ]

We adopt the usual conventions of model theory, writing A = 〈|A|, tA1 , . . .〉 if
we think of the predicates and constants of L as being arranged in a �xed
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sequence t1, t2, . . .. Similarly, if ϕ = ϕ(v1, . . . , vn) is a formula in which at
most the variables v1, . . . , vn occur free, we write A |= ϕ[a1, . . . , an] for:

A |= ϕ[f ] where f(vi) = ai for i = 1, . . . , n.

If ϕ is a sentence we write: A |= ϕ. If A is a set of sentences, we write A ` A
to mean: A |= ϕ for all ϕ ∈ A.

Proof: The correctness theorem says that if A is a set of L sentences and
A |= A, then A is consistent. (We leave this to the reader.)
Barwise's Completeness Theorem says that the converse holds whenever our
admissible structure is countable:

Theorem 1.4.7. Let M be a countable admissible structure. Let L be an

M�language and let A be a set of statements in L. If A is consistent in

M��nite predicate logic, then L has a model A such that A |= A.

Proof: (Sketch)
We make use of the following theorem of Rasiowa and Sikorski: Let B be a
Boolean algebra. Let Xi ⊂ B(i < ω) such that the Boolean union

⋃
Xi = bi

exists in the sense of B. Then B has an ultra�lter U such that

bi ∈ U ↔ Xi ∩ U 6= ∅ for i < ω.

(Proof. Successively choose ci(i < ω) by: c0 = 1, ci+1 = ci ∩ b 6= 0, where
b ∈ Xi ∪ {¬bi}. Let U = {a ∈ B|

∨
ici ⊂ a}. Then U is a �lter and extends

to an ultra�lter on B.)

Extend the language L by adding anM�in�nite set C of new constants. Call
the extended language L∗. Set:

[ϕ] =: {ψ|A ` (ψ ↔ ϕ)}

for L∗�sentences ϕ. Then

B =: {[ϕ]|ϕ ∈ SentL∗}

in the Lindenbaum algebra of L∗ with the de�ning equations:

[ϕ] ∪ [ψ] = [ϕ ∨ ψ], [ϕ] ∩ [ψ] = [ϕ ∧ ψ],¬[ϕ] = [¬ϕ]⋃
i∈U

[ϕi] = [
∧∧
i∈U

ϕi](i ∈ u),
⋂
i∈U

[ϕi] = [
∧∧
i∈U

ϕi](i ∈ u)⋃
c∈C

[ϕ(c)] = [
∨
vϕ(v)],

⋂
c∈C

[ϕ(c)] = [
∧
vϕ(v)].

The last two equations hold because the constants in C, which do not occur in
the axiom A, behave like free variables. By Rasiowa dn Sikorski there is then
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an ultra�lter U on B which respects the above operations. We de�ne a model
A = 〈|A|, 〈tA|t ∈ L〉〉 as follows: For c ∈ C set [c] =: {c′ ∈ C|[c = c′] ∈ U}.
If p ∈ L is an n�place predicate, set:

PA([c1], . . . , [cn])↔: [Pc1, . . . , cn] ∈ U.

If t ∈ L is a constant, set:

tA = [c] where c ∈ C, [t = c] ∈ U.

A straightforward induction then shows:

A |= ϕ[[c1], . . . , [cn]↔ [ϕ(c1, . . . , cn)] ∈ U

for formulae ϕ = ϕ(v1, . . . , vn) with at most the free variables v1, . . . , vn. In
particular, A |= ϕ↔ [ϕ] ∈ U for L∗�statements ϕ. Hence A |= A.

QED (Theorem 1.4.7)

Combining the completeness theorem with the M��niteness lemma, we get
the well known Barwise compactness theorem:

Corollary 1.4.8. Let M be countable. Let L be a language. Let A be a

Σ1(M) set of sentences in L. If every M��nite subset of A has a model,

then so does A.

1.4.3 Applications

De�nition 1.4.3. By a theory or axiomatized language we mean a pair
L = 〈L0, A〉 such that L0 is a language and A is a set of L0�sentences. We
say that A models L i� A is a model of L0 and A |= A. We also write L ` ϕ
for: (ϕ ∈ FmlL0 and A ` ϕ). We say that L = 〈L0, A〉 is Σ1(M) (in p) i�
L0 is ∆1(M) (in p) and A is Σ1(M) (in p). Similarly for: L is ∆(M) (in p).

We now consider the class of axiomazized languages containing a �xed pred-
icate ∈̇, the special constants x(x ∈M) (we can set e.g. x = 〈1, 〈0, x〉〉), and
the basic axioms:

• Extensionality

•
∧
v(v∈̇x↔

∨∨
z∈x

v=̇z) for x ∈M .

(Further predicates, constants, and axioms are allowed of course.) We call
any such theory an "∈�theory". Then:



38 CHAPTER 1. TRANSFINITE RECURSION THEORY

Lemma 1.4.9. Let A be a grounded model of an ∈�theory L. Then xA =
x ∈ wfc(A) for x ∈M .

In an ∈�theory L we often adopt the set of axioms ZFC− (or more precisely
ZFC−L ). This is the collection of all L�sentences ϕ such that ϕ is the universal
quanti�er closure of an instance of the ZFC− axiom schemata � but does
not contain in�nite conjunctions or disjunctions. (Hence the collection of all
subformulae is �nite.) (Similarly for ZF−, ZFC, ZF .)

(Note If we omit the sentences containing constants, we get a subset B ⊂
ZFC− which is equivalent to ZFC− in L. Since each element of B contain
at most �nitely many variables, we can restrict further to the subset B′ of
sentences containing only the variables vi(i < ω). If ω ∈ M and the set
of predicates in L is M��nite, then B′ will be M��nite. Hence ZFC− is
equivalent in L to the statement

∧∧
B′.)

We now bring some typical applications of ∈�theories. We say that an ordinal
α is admissible in a ⊂ α i� 〈Lα[a],∈, a〉 is admissible.

Lemma 1.4.10. Let α > ω be a countable admissible ordinal. Then there is

a ⊂ ω such that α is the least ordinal admissible in a.

This follows straightforwardly from:

Lemma 1.4.11. Let M be a countable admissible structure. Let L be a

consistent Σ1(M) ∈�theory such that L ` ZF−. Then L has a grounded

model A such that A 6= wfc(A) and On∩wfc(A) = On∩M .

We �rst show that lemma 1.4.11 implies lemma 1.4.10. Take M = Lα. Let
L be the M�theory with:

Predicate: ∈̇

Constants: x(x ∈M), ȧ

Axioms: Basic axioms + ZFC−+β is not admissible in ȧ

Then L is consistent, since 〈Hω1 ,∈, a〉 is a model, where a is any a ⊂ ω
codes a well ordering of type ≥ α. Let L be a grounded model of L such
that wfc(A) 6= A and On∧wfc(A) = α. Then wfc(A) is admissible by �3.
Hence so is Lα[a] where a = ȧA. QED

Note This is a very typical application in that Barwise theory hands us an ill
founded model, but our interest is entirely concentrated on its well founded
part.
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Note Persuing this method a bit further we can use lemma 1.4.11 to prove:
Let ω < α0 < . . . < αn−1 be a sequence of countable admissible ordinals.
There is a ⊂ ω such that αi = the i�theory α < ω which is admissible in
a(1 = 0, . . . , n− 1).

We now prove lemma 1.4.11 by modifying the proof of the completeness
theorem. Let Γ(v) be the set of formulae: v ∈ On, v > β(β ∈ On∧M). Add
an M�in�nite (but ∆1(M)) set E of new constants to L. Let L′ be L with
the new constants and new axioms: Γ(e) (e ∈ E). Then L′ is consistent,
since any M��nite subset of the axioms can be modeled in an arbitrary
grounded model A of L by interpreting the new constants as su�ciently
large elements of α. As in the proof of completeness we then add a new
class C of constants which is not M��nite. We assume, however, that C is
∆1(M). We add no further axioms, so the elements of C behave like free
variables. The iv extended language L′′ is clearly Σ1(M).

Now set:

∆(v) =: {v /∈ On} ∪
⋃
β∈M
{v ≤ β} ∪

⋃
e∈E
{e < v}.

Claim Let c ∈ C. Then
⋃
{[ϕ]|ϕ ∈ ∆(c)} = 1 in the Lindenbaum algebra of

L′′.

Proof: Suppose not. Then there is ψ such that A ` ϕ→ ψ for all ϕ ∈ ∆(c)
and A ∪ {¬ψ} is consistent, where L′′ = 〈L′′0, A〉. Pick an e ∈ E which does
not occur in ψ. Let A∗ be the result of omitting the axioms Γ(e) from A.
Then A∗ ∪ {¬ψ} ∪ Γ(e) ` c ≤ e. By the �niteness lemma there is β ∈ M
such that A∗ ∪ {¬ψ} ∪ {β ≤ e} ` c ≤ e. But e behaves here like a free
variable, so A∗ ∪ {¬ψ} ` c ≤ β. But A ⊃ A∗ and A ∪ {¬ψ} ` β < c. Hence
A ∪ {¬ψ} ` β < β and A ∪ {¬ψ} is inconsistent.
Contradiction! QED (Claim)

Now let U be an ultra�lter on the Lindenbaum algebra of L′′ what respects
both two operations listed in the proof of the completeness theorem and the
unions

⋃
{[ϕ]|ϕ ∈ ∆(c)} for c ∈ C. Let X = {ϕ|[ϕ] ∈ U}. Then as before,

L′′ has a grounded model A, all of whose elementes have the form cA for
a ⊂∈ C and such that:

A |= ϕ i� ϕ ∈ X

for L′′�statements ϕ. But then for each x ∈ A we have either x /∈ OnA or
x < β for a β ∈ On∩M or eA < v for all e ∈ E. In particular, if x ∈ OnA
and x > β for all β ∈ On∩M , then there is eA < x in A. But β < eA for all
β ∈ On∩M . Hence OnA \OnM has no minimal element in A.

QED (Lemma 1.4.11)

Another typical application is:



40 CHAPTER 1. TRANSFINITE RECURSION THEORY

Lemma 1.4.12. Let W be an inner model of ZFC. Suppose that, in W , U
is a normal measure on κ. Let τ > u be regular in W . Set: M = 〈HW

τ , U〉.
Assume that M is countable in V . Then for any α ⊆ u there is M = 〈H,U〉
such that

• M |= U is a normal measure on κ for a κ ∈M

• M iterates to M in α many steps.

(Hence M is iterable, since M is.)

Proof: The case α = 0 is trivial, so assume α > 0. Let δ be least such that
Lδ(M) is admissible. Let L be the ∈�theory on Lδ(M) with:

Predicate: ∈̇

Constants: x(x ∈ Lδ(M)), Ṁ

Axiom: • Basic axioms + ZFC−

• Ṁ = 〈Ḣ, U̇〉 |= (ZFC−+U̇ is a normal measure on a κ < Ḣ)

• Ṁ iterates to M in α many steps.

It will su�ce to show:

Claim L is consistent.

We �rst show that the claim implies the theorem. Let A be a grounded model
of L. Then Lδ(M) ⊂ wfc(A). Hence M,M ∈ wfc(A), where M = ṀA. But
then in A there is an iteration 〈M i|i ≤ α〉 of M to M . By absoluteness
〈M i|i ≤ α〉 really is such an iteration. QED

We now prove the claim.

Case 1 α < κ
Iterate 〈W,U〉 α many times, getting 〈Wi, Ui〉(i ⊆ α) with iteraton maps
πi,j . Then π0,α(α) = α. Set Mi = π0,1(M). Then 〈Mi|i ≤ α〉 is an iteration
of M with iteration maps πi,j �Mi. But Mα = π0,α(M). Hence 〈Hκ+ ,M〉
models π0,α(L). But then π0,α(L) is consistent. Hence so is L. QED

Case 2 α = κ
Iterate 〈W,U〉 β many times, where π0,β(κ) = β. Then 〈Mi|i ≤ β〉 iterates
M to Mβ in β many steps. Hence 〈Hκ+ ,M〉 models π0,β(L). Hence π0,β(L)
is consistent and so is L. QED (Lemma 1.4.12)
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Barwise theory is useful in situations where one is given a transitive struc-
ture Q and wishes to �nd a transitive structure Q with similar properties
inside an inner model. Another tool, which is often used in such situations,
is Schoen�eld's lemma, which, however, requires coding Q by a real. Unsur-
prizingly, Schoen�eld's lemma can itself be derived from Barwise theory. We
�rst note the well known fact that every Σ1

2 condition on a real is equivalent
to a Σ1(Hω1) condition, and conversely. Thus it su�ces to show:

Lemma 1.4.13. Let Hω1 |= ϕ[a], a ⊂ ω, where ϕ is Σ1. Then:

Hω1 |= ϕ[a] in L(a).

Proof: Let ϕ =
∨
zψ, where ψ is Σ0. Let Hω1 |= ψ[z, a] where

rn(z) = δ < α < ω1 and α is admissible in a. Let L be the language on
Lα(a) with:

Predicate: ∈̇

Constants: x(x ∈ Lα(a))

Axioms: Basic acioms + ZFC−+
∨
z(ψ(z, a) ∧ rn(z) = δ).

Then L is consistent, since 〈Hω1 , a〉 is a model. We cannot necessarily chose
α such that it is countable in L(a), however. Hence, working in L(a), we
apply a Skolem�Löwenheim argument to Lα(a), getting countable α, δ, π
such that π : Lα(a) ≺ Lα(a) and π(δ) = δ. Let L be de�ned from δ
over Lα(a) as L was de�ned from δ over Lα(a). Then L is consistent by
corollary 1.4.4. Since Lα(a) is countable in L(a), L has a grounded model
A ∈ L(a). But then there is z ∈ A such that A |= ψ[z, a] and rnA(z) = δ.
Thus rn(z) = β ∈ wfc(A) and z ∈ wfc(A). Thus wfc(A) |= ψ[z, a], where
wfc(A) ⊂ Hω1 in L(a). Hence Hω1 |= ϕ[a] in L(a). QED
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Chapter 2

Basic Fine Structure Theory

2.1 Introduction

Fine structure theory arose from the attempt to describe more precisely the
way the constructable hierarchy grows. There are many natural natural
questions. We know for instance by Gödel's condensation lemma that there
are countable γ such that Lγ models ZFC−+ω1 exists. This means that
some β < γ is a cardinal in Lγ but not in L. Hence there is a subset b ⊂ β
lying in L but not in Lγ . Hence there must be a least α > γ such that such
a subset lies in Lα+1 = Def(Lα). What happens there, and what do such α
look like? It turns out that there is then a Σω(Lα) injection of Lα into β,
and that α can be anything � even a successor ordinal.

In chapter 1 we developed an elaborate body of methods for dealing with
admissible structures. In order to deal with questions like the above ones,
we must try to adapt these methods to an arbitrary Lα. A key concept in
this endeavor is that of amenability :

De�nition 2.1.1. A transitive structureM = 〈|M |,∈, A1, . . . , An〉 is amenable

i� Ai ∩ x ∈M for all x ∈M , i = 1, . . . , n.

Thus, as stated at the end of chapter 1, �1.1, an α ≥ ω is strongly admissible
i� 〈Lα, A〉 is amenable for all Σ1(Lα) sets A. Using this as a starting point,
we sketch (omitting all details!) the �ne structural proof that if b ⊂ β < α
and b ∈ Lα+1 \ Lα, then there is a Σω(Lα) injection of Lα into β. Suppose,
�rst, that b is Σ1(Lα). Then β ≥ ρ0, where ρ0 is the projectum of Lα. But
as stated in chapter 1, �1.1, there is then a Σ1(Lα) injection f0 of Lα into
ρ0, which proves the result. Now suppose that b is Σ2(Lα) but not Σ1(L2)
and that β < ρ0. By the existens of f0 there is a Σ1(Lα) set A0 ⊂ ρ0 which

43
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completely codes Lα. N0 = 〈Lρ0 , A0〉 is then amenable and b is Σ1(N0).
Thus β ≥ ρ1, where ρ1 is the projectum of N0. However, N0 is so much like
an Lα that there is a Σ1(N0) injection f1 of N0 into ρ1. Thus f1 ◦ f0 is a
Σω(Lα) injection into ρ1 ≥ β. If b is Σ3(Lα) but not Σ2(Lα) and β < ρ1, we
go one step further, forming N1 = 〈Jρ1 , A1〉 which codes N0 and note that
b is now Σ1(N1) etc. Note that, since α ≥ ρ0 ≥ ρ1, . . ., the sequence of ρi

must stabilize at some point.

The �rst proof of the above result was due to Hilary Putnam and did not use
the full �ne structure analysis we have just outlined. However, our analysis
yielded many new insights; giving for instance the �rst proof that Lα is Σn

uniformizable for all n ≥ 1. (I.e. every Σn relation is uniformizable by a Σn

function.)

Not long afterwards �ne structure theory was used to prove some deep global
properties of L, such as:

L |= �β for all in�nite cardinals β.

It was also used to prove the covering lemma for L. That, in turn, led to
extended versions of �ne structure theory which could be used to analyze
larger inner models, in which some large cardinals could be realized. (Here,
however, the �ne structure theory was needed not only to analyze the inner
model, but even to de�ne it in the �rst place.)

Carrying out the above analysis of L requires a very �ne study of de�nability
over an arbitrary Lα. In order to achieve this, however, one must overcome
some formidable technical obstacles which arise from Gödel's de�nition of
the constructible hierarchy: At successors α, Lα is not even closed under
ordered pairs, let alone other basic set functions like unit set, crossproduct
etc. One solution is to employ the theory of rudimentary functions in an
auxiliary role. These functions, which were discovered by Gandy and Jensen,
are exactly the functions which are generated by the schemata for primitive
recursive functions when the recursion schema is omitted. (Cf. the remark
following chapter 1, �2, Lemma 1.1.4). If rn(xi) < γ for i = 1, . . . , n and f is
rudimentary, then rn(f(x1, . . . , xn)) < γ + ω. All reasonable "elementary"
set theoretic functions are rudimentary. If α is a limit ordinal, then Lα
is closed under rudimentary functions. If α is a successor, then closing Lα
under rudimentary functions yields a transitive structure L∗α of rank α+ω. It
then turns out that every Σω(L∗α) de�nable subset of Lα is already Σω(L∗α),
and conversely. Hence we can, in e�ect, replace the rather weak de�nability
theory of Lα by the rather nice de�nability theory of L∗α. (This method was
used in [JH], except that L∗α was given a di�erent but equivalent de�nition,
since the rudimentary functions were not yet known.) It turns out that ifN is
transitive and rudimentarily closed, and Rud(N) is de�ned to be the closure



2.2. RUDIMENTARY FUNCTIONS 45

of N ∪ {N} under rudimentary functions, then P(N) ∩ Rud(N) = Def(N).
This suggests an alternative version of the constructible hierarchy in which
every level is rudimentarily closed. We shall index this hierarchy by the class
Lm of limit ordinals, setting:

Jω = Hω = Rud(∅)

Jα+ω = Rud(Jα) for α ∈ Lm

Jλ =
⋃
ν<λ

Jν for λ a limit p.t. of Lm.

(Note Setting J =
⋃
α
Jα, we have: J = L in fact Jα = Lα whenever α is pr

closed.)

(Note This indexing was introduced by Sy Friedman. In [FSC] we indexed
by all ordinals, so that our Jωα corresponds to the Jα of [FSC]. The usage
in [FSC] has been followed by most authors. Nonetheless we here adopt
Friedman's usage, which seems to us more natural, since we then have: α =
rn(Jα) = On∩Jα.)

In the following section we develop the theory of rudimentary functions.

2.2 Rudimentary Functions

De�nition 2.2.1. f : V n → V is a rudimentary (rud) function i� it is
generated by successive applications of schemata (i) � (v) in the de�nition
of primitive recursive in chapter 1, �2.

A relation R ⊂ V n is rud i� there is a rud function f such that: R~x ↔
f(~x) = 1. In chapter 1, �1.2 we established that:

Lemma 2.2.1. Lemmas 1.2.1 � 1.2.4 of chapter 1, �1.2 hold with 'rud' in
place of 'pr'.

(Note Our de�nition of 'rud function', like the de�nition of 'pr function' is
ostensibly in second order set theory, but just as in chapter 1, �1.2 we can
work in ZFC by talking about rud de�nitions. The notion of rud de�nition
is de�ned like that of pr de�nition, except that instances of schema (vi) are
not allowed. As before, we can assign to each rud de�nition s a rud function
Fs : V n → V with the property that FMs = Fs �M wheneverM is admissible
and FMs : Mn → M is the function on M de�ned by s. But then if M is
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transitive and closed under rud functions, it follows by induction on the
length of s that there is a unique FMs = Fs �M .)

A rudimentary function can raise the rank of its arguments by at most a
�nite amount:

Lemma 2.2.2. Let f : V n → V be rud. Then there is p < ω such that

f(~x) ⊂ Pp(TC(x1 ∪ . . . ∪ xn)) for all x1, . . . , xn.

(Hence rn(f~x) ≤ max{rn(x1), . . . , rn(xn)}+ p and
⋃p f(~x) ⊂ TC(x1 ∪ . . .∪

xn).)

Proof: Call any such p su�cient for f . Then if p is su�cient, so is every
q ≥ p. By induction on the de�ning schemata for f , we prove that f has
a su�cient p. If f is given by an initial schema, this is trivial. Now let
f(~x) = h(g1(~x), . . . , gm(~x)). Let p be su�cient for h and q be su�cient for
gi(i = 1, . . . ,m). It follows easily that p + q is su�cient for f . Now let
f(y, ~x) =

⋃
z∈y

g(z, ~x), where p is su�cient for g. It follows easily that p is

su�cient for f . QED

By lemma 2.2.1 and chapter 1 lemma 1.2.3 (i) we know that every Σ0 relation
is rud. We now prove the converse. In fact we shall prove a stronger result.
We �rst de�ne:

De�nition 2.2.2. f : V n → V is simple i� whenever R(z, ~x) is a Σ0 relation,
then so is R(f(~x), ~y).

The simple functions are obviously closed under composition. The simplicity
of a function f is equivalent to the conjunction of the two conditions:

(i) x ∈ f(~y) is Σ0

(ii) If A(z, ~u) is Σ0, then
∧
z ∈ f(~x)A(z, u) is Σ0,

for given these we can verify by induction on the Σ0 de�nition of R that
R(f(~x), ~y) is Σ0.
But then:

Lemma 2.2.3. All rud functions are simple.

Proof: Using the above facts we verify by induction on the de�ning schemata
of f that f is simple. The proof is left to the reader. QED

In particular:
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Corollary 2.2.4. Every rud function f is Σ0 as a relation. Moreover f �U
is uniformly Σ0(U) whenever U is transitive and rud closed.

Corollary 2.2.5. Every rud relation is Σ0.

In chapter 1, �2 we relativized the concept 'pr' to 'pr in A1, . . . , An'. We can
do the same thing with 'rud'.

De�nition 2.2.3. Let Ai ⊂ V (i = 1, . . . ,m). f : V n → V is rudimentary in

A1, . . . , An (rud in A1, . . . , An) i� it is obtained by successive applications
of the schemata (i) � (v) and:

f(x) = χA(x) (i = 1, . . . , n)

where χA is the characteristic function of A.

Lemma 1.1.1 and 1.1.2 obviously hold with 'rud in A1, . . . , An' in place of
'rud'. Lemma 2.2.3 and its corollary do not hold, however, since e.g. the
relation {x} ∈ A is not Σ0 in A.

However, we do get:

Lemma 2.2.6. If f is rud in A1, . . . , An, then

f(~x) = f0(~x,A1 ∩ f1(~x), . . . , An ∩ fn(~x))

where f0, f1, . . . , fn are rud functions.

Proof: We display the proof for the case n = 1. Let f be rud in A. By
induction on the de�ning schemata for f we show:

f(~x) = f0(~x,A ∩ f1(~x)) where f0, f1 are rud .

Case 1 f is given by schemata (i) � (iii). This is trivial.

Case 2 f(x) = XA(x). Then

f(x) =

{
1 if A ∩ {x} 6= ∅
0 if not

}
= f ′(x,A ∩ {x})

where f ′ is rud. QED (Case 2)

Case 3 f(~x) = g(h1(~x), . . . , hm(~x)). Let

g(~z) = g0(~z,A ∩ g1(~z))
hi(~x) = hi0(~x,A ∩ hi1(~z))(i = 1, . . . ,m)
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where g0, g1, h
i
0, h

i
1 are rud. Set:

g̃(~z, u) = g0(~z, u ∩ g1(~z))

h̃i(~x, u) = hi0(~x, u ∩ hi1(~x))

f̃(~x, u) = g̃(h̃1(~x, u), . . . , h̃m(~x, u), u)

k(~x) = g1(~h1(~x)) ∪
m⋃
i=1
hi1(~x).

Then f(~x) = f̃(~x,A∩ k(~x)), where f̃ , k are rud. This follows from the
facts:

h̃i(~x,A ∩ v) = hi0(~x,A ∩ hi1(~x)) = hi(~x) if hi1(~x) ⊂ v
g̃i(~z,A ∩ v) = g0(~z,A ∩ z) if g1(~z) ⊂ v.

QED (Case 3)

Case 4 f(y, ~x) =
⋃
z∈y

g(z, ~x). Let g(z, ~x) = g0(z, ~x,A ∩ g1(z, ~x)). Set

g̃(z, ~x, u) = g0(z, ~x, u ∩ g1(z, ~x))

f̃(y, ~x, u) =
⋃
z∈y

g̃(z, ~x, u)

k(y, ~x) =
⋃
z∈y

g1(z, ~x)

Then f(y, ~x) = f̃(y, ~x,A ∩ k(y, ~z)) where f̃ , k are rud.
QED (Lemma 2.2.6)

De�nition 2.2.4. X is rudimentarily closed (rud closed) i� it is closed
under rudimentary functions. 〈M,A1, . . . , An〉 is rud closed i� M is closed
in functions rudimentary in A1, . . . , An.

If M = 〈|M |, A1, . . . , An〉 is transitive and rud closed, then it is amenable,
since it is closed under f(x) = x ∩A. By lemma 2.2.6 we then have:

Corollary 2.2.7. Let M = 〈|M |A1, . . . , An〉 be transitive. M is rud closed

i� it is amenable and |M | is rud closed.

Corresponding to corollary 2.2.4 we have:

Corollary 2.2.8. Every function f which is rud in A is Σ1 in A as a

relation. Moreover f �U is Σ1(〈U,A∩U〉) by the same Σ1 de�nition whenever

〈U,A∩U〉 is transitive and rud closed. (Similarly for "rud in A1, . . . , An".)

Proof: Let f(~x) = f0(~x,A ∩ f1(~x)) where f0, f1 are rud. Then:

y = f(~x)↔
∨
u
∨
z(y = f0(~x, z) ∧ u = f1(~x) ∧ z = A ∩ u).
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QED (Corollary 2.2.8)

In chapter 1 �2.2 we extended the notion of "pr de�nition" so as to deal with
functions pr in classes A1, . . . , An. We can do the same for rudimentary
functions:

We appoint new designated function variables ȧ1, . . . , ȧn and de�ne the set of
rud de�nition in a1, . . . , an exactly as before, except that we omit the schema
(vi). Given A1, . . . , An we can, exactly as before, assign to each rud de�nition
s in ȧ1, . . . , ȧn a function FA1,...,An

s are then exatly the functions rud in
A1, . . . , An. Since lemma 2.2.6 (and with it corollary 2.2.8) is proven by
induction on the de�ning schemata, its proof implicitly de�nes an algorithm

which assigns to each s as Σ1 formula ϕs which de�nes F
~A
s .

Corresponding to chapter 1 �1 Lemma 1.1.13 we have:

Lemma 2.2.9. Let f be rud in A1, . . . , An, where each Ai is rud in B1, . . . , Bm.
Then f is rud in B1, . . . , Bm.

The proof is again by induction on the de�ning schemata. It shows, in fact
that f is uniformly rud in ~B in the sense that its rud de�nition from ~B
depends only on its rud de�nition from ~A and the rud de�nition of Ai from
~B (i = 1, . . . , n).

We also note:

Lemma 2.2.10. Let π : M →Σ0 M , where M,M are rud closed. Then

π preserves rudimentarily in the following sense: Let f be de�ned from the

predicates of M by the rud de�nition s. Let f be de�ned from the predicates

of M by s. Then π(f(~x)) = f(π(~x)) for x1, . . . , xn ∈M .

Proof: Let ϕs be the canonical Σ1 de�nition. Then M |= ϕs[y, ~x] → M |=
ϕs[π(y), π(~x)] by Σ0�preservation. QED (Lemma 2.2.10)

We now de�ne:

De�nition 2.2.5.

rud(U) =: The closure of U under rud functions

rudA1,...,An(U) =: The closure of U under functions rud in A1, . . . , An

(Hence rud(U) = rud∅(U).)

Lemma 2.2.11. If U is transitive, then so is rud(U).
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Proof: Let W = rud(U). Let Q(x) mean: TC({x}) ⊂W . By induction on
the de�ning schemata of f we show:

(Q(x1) ∧ . . . ∧Q(xn))→ Q(f(x1, . . . , xn))

for x1, . . . , xn ∈ W . The details are left to the reader. But x ∈ U → Q(x)
and each z ∈W has the form f(~x) where f is rud and x1, . . . , xn ∈ U . Hence
TC({z}) ⊂W for z ∈W . QED

The same proof shows:

Corollary 2.2.12. If U is transitive, then so is rud ~A(U).

Using Corollary 2.2.12 and Lemma 2.2.3 we get:

Lemma 2.2.13. Let U be transitive and W = rud(U). Then the restriction

of any Σ0(W ) relation to U is Σ0(U).

Proof: Let R be Σ0(W ). Let R(~x) ↔ R′(~x, ~p) where R′ is Σ0(W ) and
p1, . . . , pn ∈ W . Let pi = fi(~z), where fi is rud and z1, . . . , zn ∈ U . Then
for x1, . . . , xm ∈ U :

R(~x) ↔ R′(~x, ~f(~z))
↔ R′′(~x, ~z)

where R′′ is Σ0(U), by lemma 2.2.3. QED (Lemma 2.2.13)

We now de�ne:

De�nition 2.2.6. Let U be transitive.

Rud(U) =: rud(U ∪ {U})
Rud ~A(U) =: rud ~A(U ∪ {U})

Then Rud(U) is a proper transitive extension of U . By Lemma 2.2.13:

Corollary 2.2.14. Def(U) = P(U) ∩ Rud(U) if U 6= ∅ is transitive.

Proof: If A ∈ Def(U), then A is Σ0(U ∪ {U}). Hence A ∈ Rud(U). Con-
versely, if A ∈ Rud(U), then A is Σ0(U ∪ {U}) by lemma 1.1.7. It follows
easily that A ∈ Def(U). QED (Corollary 2.2.14)

[Note To see that A ∈ Def(U), consider the ∈�language augmented by a
new constant U̇ which is interpreted by U . We assign to every Σ0 formula
ϕ in this language a �rst order formula ϕ′ not containing U̇ such that for all
x1, . . . , xn ∈ U :

U ∪ {U} |= ϕ[~x]↔ U |= ϕ′[~x].
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(Here xi is taken to interpret vi where v1, . . . , vn is an arbirtrarily chosen of
distinct variables, including all variables which occur free in ϕ.) We de�ne
ϕ′ by induction on ϕ. For primitive formulae we set �rst:

(v ∈ w)′ = v ∈ w, (v ∈ U̇)′ = v = v,

(U̇ ∈ v)′ = v 6= v, (U̇ ∈ U̇) =
∨
v v 6= v.

For sentential combinations we do the obvious thing:

(ϕ ∧ ψ)′ = (ϕ′ ∧ ψ′), (¬ϕ)′ = ¬ϕ′,

etc. Quanti�ers are treated as follows:

(
∧
v ∈ wϕ)′ =

∧
v ∈ wϕ′

(
∧
v ∈ U̇ϕ)′ =

∧
vϕ′.]

Given �nitely many rud functions s1, . . . , sp we say that they constitute a
basis for the rud function i� every rud function is obtainable by successive
application of the schemata:

• f(x1, . . . , xn) = xj (j = 1, . . . , n)

• f(~x) = si(g1(~x), . . . , gm(~x) (i = 1 . . . , p)

Note that if s1, . . . , sn is a basis, then rud(U) is simply the closure of U
under the �nitely many functions s1, . . . , sp. We shall now prove the Basis

Theorem, which says that the rud functions possess a �nite basis. We �rst
de�ne:

De�nition 2.2.7. (x, y) =: {{x}, {x, y}}; (x) = x,
(x1, . . . , xn) = (x1, (x2, . . . , xn)) for n ≥ 2.

(Note: Our "o�cial" notation for n�tuples is 〈x1, . . . , xn〉. However, we
have refrained from specifying its de�nition. Thus we do not know whether
(~x) = 〈~x〉.)

We also set:

De�nition 2.2.8.

x⊗ y = {(z, w)|z ∈ x ∧ w ∈ y}
dom∗(x) = {z|

∨
y(y, z) ∈ x}

x∗z = {y|(y, z) ∈ x}
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Theorem 2.2.15. The following functions form a basis for the rud function:

F0(x, y) = {x, y}
F1(x, y) = x \ y
F2(x, y) = x⊗ y
F3(x, y) = {(u, z, v)|z ∈ x ∧ (u, v) ∈ y}
F4(x, y) = {(u, v, z)|z ∈ x ∧ (u, v) ∈ y}
F5(x, y) =

⋃
x

F6(x, y) = dom∗(x)
F7(x, y) = {(z, w)|z, w ∈ x ∧ z ∈ w}
F8(x, y) = {x∗z|z ∈ y}

Proof: The proof stretches over several subclaims. Call a function f good

i� it is obtainable from F0, . . . , F8 by successive applications of the above
schemata. Then every good function is rud. We must prove the converse.
We �rst note:

Claim 1 The good functions are closed under composition� i.e. if g, h1, . . . , hn
are good, then so is f(~x) = g(~h(~x)).

Proof: Set G = the set of good function g(y1, . . . , yv) such that whenever
hi(~x) is good for i = 1, . . . , r, then so is f(~x) = g(~h(~x)). By a straightforward
induction on the de�ning schemata it is easily shown that all good functions
are in G. QED (Claim 1)

Claim 2 The following functions are good:

{x, y}, x \ y, x⊗ y, x ∪ y =
⋃
{x, y},

x ∩ y = x \ (x \ y), {x1, . . . , xn} = {x1} ∪ . . . ∪ {xn},

Cn(u) = u ∪
⋃
u ∪ . . . ∪

n︷ ︸︸ ︷⋃
. . .
⋃
u, (x1, . . . , xn)

(since (x1, . . . , xn) is obtained by iteration of F0.) By an ∈�formula we
mean a �rst oder formula containing only ∈̇ as a non logical predicate. If
ϕ = ϕ(v1, . . . , vn) is any ∈�formula in which at most the distinct variables
(v1, . . . , vn) occur free, set:

tϕ(u) =: {(x1, . . . , xn)|~x ∈ u ∧ 〈u,∈〉 |= ϕ[~x]}.

(Note We follow the usual convention of suppressing the list of variables.)

(Note Recall our convention that ~x ∈ u means that xi ∈ u for i = 1, . . . , n.)
Then tϕ is rud. We claim:

Claim 3 tϕ is good for every ∈�formula ϕ.

Proof:
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(1) It holds for ϕ = vi ∈ vj (1 ≤ i < j ≤ n)

Proof: For i = 2, 3 set:

F 0
i (u,w) = w, Fm+1

i (u,w) = Fi(u, F
m
i (u,w))

then Fmi u is good for all m. For m ≥ 1 we have:

Fm2 (u,w) = {(x1, . . . , xm, z)|~x ∈ u ∧ z ∈ w}
Fm3 (u,w) = {(y, x1, . . . , xm, z)|~x ∈ u ∧ (y, z) ∈ w}

We also set
u(m)= {(x1, . . . , xm)|~x ∈ u}

= Fm−1
2 (u, u)

If j = n, then

tϕ(u)= {(x1, . . . , xm)|~x ∈ u ∧ xi ∈ xj}
= F i−1

2 (u, Fn−i−1
3 (u, F7(u, u))).

Now let n > j. Noting that:

F4(u(m), w) = {(y, z, x1, . . . , xm)|~x ∈ u ∧ (y, z) ∈ w},

we have:

tϕ(u) = F i−1
2 (u, F j−i−1(u, F4(u(n−j), F7(u, u)))).

QED (1)

(2) It holds for ϕ = vi ∈ vi.

Proof: tϕ(w) = ∅ = w \ w.

(3) If it holds for ϕ = ϕ(v1, . . . , vn), then for ¬ϕ.

Proof:

t¬ϕ(w) = (w(n) \ tϕ(w)).

QED (3)

(4) If it holds for ϕ,ψ, then for ϕ ∧ ψ, ϕ ∨ ψ. (Hence for ϕ → ψ, ϕ ↔ ψ
by (3).)

Proof:

tϕ∨ψ(w) = tϕ(w) ∪ tψ(w) =
⋃
{tϕ(w), tψ(w)}

tϕ∧ψ(w) = tϕ(w) ∩ tψ(w), where x ∧ y = (x \ (x \ y)).

QED (4)
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(5) If it holds for ϕ = ϕ(u, v1, . . . , vn), then for
∧
uϕ,

∨
v ϕ.

Proof:
t∨uϕ(w) = F6(tϕ, tϕ)i hence

t∧uϕ(w) = t¬
∨
u¬ϕ(w) by (3)

QED (5)

(6) It holds for ϕ = vi = vj (i, j ≤ n).

Proof: Let ψ(v1, . . . , vn) =
∧
z(z ∈ vi ↔ z ∈ vj). Then for (~x) ∈ U (n)

we have:
(~x) ∈ tψ(u ∪

⋃
u)↔ xi = xj ,

since xi, xj ⊂ (u ∪
⋃
u). Hence

tϕ(u) = u(n) ∩ tψ(u ∪
⋃
u).

QED (6)

(7) It holds for ϕ = vj ∈ vi (i < j)

Proof:

vj ∈ vi ↔
∨
u(u = vj ∧ u ∈ vi).

We apply (6), (5) and (4). QED (7)

But then if ϕ(v1, . . . , vn) = Qu1, . . . Qunψ(~u,~v) is any formula in prenex
normal form, we apply (1), (2), (6), (7) and (3), (4) to see that tψ is good.
But then tϕ is good by iterated applications of (5). QED (Claim 3)

In our application we shall use the function tϕ only for Σ0 formulae ϕ. We
shall make strong use of the following well known fact, which can be proven
by induction on n.

Fact Let ϕ = ϕ(v1, . . . , vm) be a Σ0 formula in which at most n quanti�ers
occur. Let u be any set and let x1, . . . , xm ∈ u. Then V |= ϕ[~x]↔ Cn(u) |=
ϕ[~x].

De�nition 2.2.9. Let f : V n → V be rud. f is veri�ed i� there is a good
f∗ : V → V such that f ′′Un ⊂ f∗(U) for all sets u. We then say that f∗

veri�es f .

Claim 4 Every veri�ed function is good.

Proof: Let f be veri�ed by f∗. Let ϕ be the Σ0 formula: y = f(x1, . . . , xn).
For su�cient n we know that for any set u we have:

y = f(~x)↔ (y, ~x) ∈ tϕ(Cn(u ∪ f∗(u)))
for y, ~x ∈ u ∪ f∗(u).
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De�ne a good function F by:

F (u) =: (f∗(u)⊗ u(n)) ∩ tϕ(Cn(U ∪ f∗(u))).

Then F (u) is the set of (f(~x), ~x) such that ~x ∈ u. In particular, if u =
{x1, . . . , xn}, then:

F8(F ({~x}), {(~x)}) = {f(~x)}

and f(~x) =
⋃
F8(F ({~x}), {(~x)}). QED (Claim 4)

Thus it remains only to prove:

Claim 5 Every rud function is veri�ed.

Proof: We proceed by induction on the de�ning schemata of f .

Case 1 f(~x) = xi
Take f∗(u) = u = u \ (u \ u).

Case 2 f(~x) = xi \ xj
Let ϕ be the Σ0 formula z ∈ x \ y. For su�cient n we have:

z ∈ x \ y ↔ Cn(u ∪
⋃
u) |= z ∈ x \ y

for z, x, y ∈ u ∪
⋃
u. But if x, y ∈ u, then x \ y ⊂

⋃
u. Hence:

(x, y, z) ∈ tϕ(Cn|u ∪
⋃
u))↔ z ∈ x \ y

for all x, y ∈ u and all z.
Hence:

f ′′un = {x \ y|x, y ∈ u} ⊂ F8(tϕ(Cn(u ∪
⋃
u)), u(z)).

QED (Case 2)

Case 3 f(~x) = {xi, xj}
Then f ′′un = {{x, y}|x, y ∈ u} =

⋃
u(2). QED (Case 3)

Case 4 f(~x) = g(~h(~x))
Let h∗i verify hi and g

∗ verify g. Then f∗(u) = g∗(
⋃
i
h∗i (u)) veri�es f .

QED (Case 4)

Case 5 f(y, ~x) =
⋃
z∈y

g(z, ~x). Let g∗ verify g. Let ϕ = ϕ(w, y~x) be the Σ0

formula:
∨
z ∈ y w ∈ g(z, ~x). For su�cient n we have:∨
z ∈ y w ∈ g(z, ~x)↔ (w, y, ~x) ∈ tϕ(Cn(u ∪

⋃
g∗(u)))
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for all w, y, ~x ∈ u ∪
⋃
g∗(u).

Set F (u) = tϕ(Cn(u ∪
⋃
g∗(u))). Then g(z, ~x) ⊂

⋃
g∗(u) whenever

y, ~x ∈ u and z ∈ y. Hence

F (u)∗(y, ~x) =
⋃
z∈y

g(z, ~x)

for y, ~x ∈ U . Hence

f ′′un+1 ⊂ F8(F (u), u(n+1)).

QED (Theorem 2.2.15)

Combining Theorem 2.2.15 with Lemma 2.2.6 we get:

Corollary 2.2.16. Let A1, . . . , An ⊂ V . Then F0, . . . , F8 together with the

functions ai(x) = x ∩ Ai(i = 1, . . . , n) form a basis for the functions which

are rudimentary in A1, . . . , An.

Let M = 〈|M |,∈, A1, . . . , An〉. 'FM ' denotes the satisfaction relation for M
and '|=Σn

M ' denotes its restriction to Σn formulae. We can make good use of
the basis theorem in proving:

Lemma 2.2.17. |=Σ0
M is uniformly Σ1(M) over transitive rud closed M =

〈|M |,∈, A1, . . . , An〉.

Proof: We shall prove it for the case n = 1, since the extension of our proof
to the general case is then obvious. We are then given: M = 〈|M |,∈, A〉.
By a variable evaluation we mean a function e which maps a �nite set of
variables of the M�language into |M |. Let E be the set of such evaluations.
If e ∈ E, we can extend it to an evaluation e∗ of all variables by setting:

e∗(v) =

{
e(v) if v ∈ dom(e)
∅ if not

|=M ϕ[e] then means that ϕ becomes true in M if each free variable v in ϕ
is interpreted by e∗(v).

We assume, of course, that the �rst order language ofM has been "arithme-
tized" in a reasonable way � i.e. the syntactic objects such as formulae and
variables have been identi�ed with elements of Hω in such a way that the
basic syntactic relations and operations becom recursive. (Without this the
assertion we are proving would not make sense.) In particular the set V bl of
variables, the set Fml of formulae, and the set Fml0 of Σ0�formulae are all
recursive (i.e. ∆1(Hω)). We �rst note that every Σ0(M) relation is rud, or
equivalently:
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(1) Let ϕ be Σ0. Let v1, . . . , vn be a sequence of distinct variables contain-
ing all variables occuring free in ϕ. There is a function f uniformly
rud in A such that

|=M ϕ[e]↔ f(e∗(v1), . . . e∗(vn)) = 1

for all e ∈ E.

Proof: By induction on ϕ. We leave the details to the reader.
QED (1)

The notion A�good is de�ned like "good" except that we now add the
function F9(x, y) = x ∩ A to our basis. By Corollary 2.2.16 we know
that every function rud in A is A�good. We now de�ne in Hω an
auxiliary term language whose terms represent the A�good function.
We �rst set: Ḟi(x, y) =: 〈i, 〈x, y〉〉 for i = 0, . . . , 9: ẋ = 〈10, x〉. The set
Tm of Terms is then the smallest set such that

• v̇ is a term whenever v ∈ V bl
• If t, t′ are terms, then so is Ḟi(t, t

′) for i = 0, . . . , 9.

Applying the methods of Chapter 1 to the admissible set Hω it follows
easily that the set Tm is recursive (i.e. ∆1(Hω)). Set

C(t) ': The smallest set C such that the term t ∈ C and C is closed
under subterms (i.e. Ḟi(s, s

′) ∈ C → s, s′ ∈ C).

Then C(t) ∈ Hω for t ∈ Tm, and the function C(t) is recursive (hence
∆1(Hω)). Since V bl is recursive, the function
V bl(t) ': {v ∈ V bl|v̇ ∈ C(t)} is recursive.

We note that:

(2) Every recursive relation on Hω is uniformly Σ1(M).

Proof: It su�ces to note that: Hω is uniformly Σ1(M), since

x ∈ Hω ↔
∨
f
∨
u
∨
nϕ(f, u, n, x)

where ϕ is the Σ0 formula: f is a function ∧ u is transitive
∧n ∈ ω ∧ f : n↔ u ∧ x ∈ u. QED (2)

Given e ∈ E we recursively de�ne an evaluation 〈e(t)|t ∈ Tm〉 by:

e(v̇) = e∗(v) for v ∈ V bl
e(Ḟi(t, s)) = Fi(e(t), e(s)).

Then:
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(3) {〈y, e, t〉|e ∈ E ∧ t ∈ Tm ∧ y = e(t)} is uniformly Σ1(M).

Proof: Let e ∈ E, t ∈ Tm. Then y = e(t) can be expressed in M by:∨
g
∨
u
∨
v(u = C(t) ∧ v = V bl(t) ∧ ϕ(y, e, u, v, y, t))

where ϕ is the Σ0 formula:

(g is a function ∧dom(g) = u ∧
∧
x ∈ v x ∈ u

∧
∧
x ∈ v((x ∈ dom(e) ∧ g(ẋ) = e(x))∨
∨(x /∈ dom(e) ∧ g(ẋ) = ∅))

∧
9∧
i=0

∧
t, s, i ∈ u(t = Ḟi(s, s

′)→

→ g(t) = Fi(g(s), y(s′′)
∧y = g(t))

QED (3)

(4) Let f(x1, . . . , xn) be A�good. Let v1, . . . , v
′
n be any sequence of distinct

variables. There is t ∈ Tm such that

f(e∗(v1), . . . , e∗(vn)) = e(t)

for all e ∈ E.
Proof: By induction on the de�ning schemata of f . If f(~x) = xi,
we take t = v̇i. If e∗(~v)) = e(si) for e ∈ E(i = 0, 1), and f(~x) =
Fi(g0(~x), g1(~x)), we set t = Ḟi(s0, s1). Then

e(t) = Fi(e(s0), e(s1)) = Fi(g0(~x), g1(~x)) = f(~x).

QED (4)

But then:

(5) Let ϕ be a Σ0 formula. There is t ∈ Tm such thatM |= ϕ[e]↔ e(t) = 1
for all e ∈ E.
Proof: Let v1, . . . , vn be a sequence of distinct variables containing all
variables which occur free in ϕ. Then

M |= ϕ[e]↔M |= ϕ[e∗(v1), . . . , e∗(vn)]

for all e ∈ E. Set

(∗) f(~x) =

{
1 if M |= ϕ[~x]
0 if not.

Then f is rudimentary, hence A�good. Let t ∈ Tm such that

(∗∗) f(e∗(v1), . . . , e∗(vn)) = e(t).



2.2. RUDIMENTARY FUNCTIONS 59

Then: M |= ϕ[e]↔ e(t) = 1. QED (6)

(5) is, however, much more than an existence statement, since our
proofs are e�ective: Clearly we can e�ectively assign to each Σ0 formula
ϕ a sequence v(ϕ) = 〈v1, . . . , vn〉 of distinct variables containing all
variables which occur free in ϕ. But the proof that the f de�ned by
(∗) is rud in fact implicity de�nes a rud de�nition Dϕ such that Dϕ

de�nes such an f = fDϕ over any rud closed M = 〈M,∈, A〉. The
proof that f is A�good is by induction on the de�ning schemata and
implicitly de�nes a term t = Tϕ which satis�es (∗∗) over any rud closed
M . Thus our proofs implicitly describe an algorithm for the function
ϕ 7→ Tϕ. Hence this function is recursive, hence uniformly Σ1(M).
But then Σ0 satisfaction can be de�ned over M by:

M |= ϕ[e]↔: e(Tϕ) = 1.

QED (Lemma 2.2.17)

Corollary 2.2.18. Let n ≥ 1. |=Σn
M is uniformly Σn(M) for transitive rud

closed structures M = 〈|M |,∈, A1, . . . , An〉.

(We leave this to the reader.)

2.2.1 Condensation

The condensation lemma for rud closed sets U = 〈U,∈〉 reads:

Lemma 2.2.19. Let U = 〈U,∈〉 be transitive and rud closed. Let X ≺Σ1 U .
Then there is an isomorphism π : U

∼←→ X, where U is transitive and rud
closed. Moreover, π(f(~x)) = f(π(~x)) for all rud functions f .

Proof: X satis�es the extensionality axiom. Hence by Moztowski's isomor-
phism theorem there is π : U

∼←→ X, where U is transitive. Now let f be
rud and x1, . . . , xn ∈ U . Then there is y′ ∈ X such that y′ = f(π(~x)), since
X ≺Σ1 U . Let π(y) = y′. Then y = f(~x), since the condition 'y = f(~x)' is
Σ0 and π is Σ1�preserving. QED (Lemma 2.2.19)

The condensation lemma for rud closed M = 〈|M |,∈, A1, . . . , An〉 is much
weaker, however. We state it for the case n = 1.

Lemma 2.2.20. Let M = 〈|M |,∈, A〉 be transitive and rud closed. Let

X ≺Σ0 M . There is an isomorphism π : M
∼←→ X, where M = 〈|M |,∈, A〉

is transitive and rud closed. Moreover:

(a) π(A ∩ x) = A ∩ π(x)
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(b) Let f be rud in A. Let f be characterized by: f(~x) = f0(~x,A ∩ f1(~x)),
where f0, f1 are rud. Set: f(~x) =: f0(~x,A ∩ f1(~x)). Then:

π(f(~x)) = f(π(~x)).

The proof is left to the reader.

2.3 The Jα hierarchy

We are now ready to introduce the alternative to Gödel's constructible hier-
archy which we had promised in �1. We index it by ordinals from the class
Lm of limit ordinals.

De�nition 2.3.1.

Jω = Rud(∅)
Jβ+ω = Rud(Jβ) for β ∈ Lm
Jλ =

⋃
γ<λ

Jγ for λ a limit point of Lm

It can be shown that L =
⋃
α
Jα and, indeed, that Lα = Jα for a great many

α (fr. ins. pr closed α). Note that Jω = Lω = Hω.

By �2 Corollary 2.2.14 we have:

P(Jα) ∩ Jα+ω = Def(Jα),

which pinpoints the resemblance of the two hierarchies. However, we shall
not dwell further on the relationship of the two hierarchies, since we intend
to consequently employ the J�hierarchy in the rest of this book. As usual,
we shall often abuse notation by not distinguishing between Jα and 〈Jα,∈〉.

Lemma 2.3.1. rn(Jα) = On∩Jα = α.

Proof: By induction on α ∈ Lm. For α = ω it is trivial. Now let α = β+ω,
where β ∈ Lm. Then β = On∩Jβ ∈ Def(Jβ) ⊂ Jα. Hence β + n ∈ Jα for
n < ω by rud closure. But rn(Jα) ≤ β + ω = α since Jα is the rud closure
of Jα ∪ {Jα}. Hence On∩Jα = α = rn(Jα).

If α is a limit point of Lm the conclusion is trivial. QED (Lemma 2.3.1)

To make our notation simpler, de�ne

De�nition 2.3.2. Lm∗ = the limit points of Lm.
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It is sometimes useful to break the passage from Jα to Jα+ω into ω many
steps. Any way of doing this will be rather arbitrary, but we can at least do
it in a uniform way. As a preliminary, we use the basis theorem (�2 Theorem
2.2.15) to prove:

Lemma 2.3.2. There is a rud function s : V → V such that for all U :

(a) U ⊂ s(U)

(b) rud(U) =
⋃
n<ω

sn(U)

(c) If U is transitive, so is s(U).

Proof: De�ne rud functions Gi(i = 0, 1, 2, 3) by:

G0(x, y, z) = (x, y)
G1(x, y, z) = (x, y, z)
G2(x, y, z) = {x, (y, z)}
G3(x, y, z) = x∗y

Set:

s(U) =: U ∪
9⋃
i=0

FUi U
2 ∪

3⋃
i=0

GUi U
3.

(a) is then immediate, (b) is immediate by the basis theorem. We prove (c).

Let a ∈ s(U). We claim: a ⊂ s(U). There are 14 cases: a ∈ U, a = Fi(x, y)
for an i = 0, . . . , 8, where x, y ∈ U , and a = Gi(x, y, z) where x, y, z ∈ U
and i = 0, . . . , 3. Each of the cases is quite straightforward. We give some
example cases:

• a = F (x, y) = x ⊗ y. If z ∈ a, then z = (x′, y′) where x′ ∈ x, y′ ∈ y.
But then x′, y′ ∈ U by transitivity and z = G0(x′, y′, x′) ∈ s(U).

• a = F3(x, y) = {(w, z, v)|z ∈ x ∧ (u, v) ∈ y}. If a′ = (w, z, v) ∈ a, then
w, z, v ∈ U by transitivity and a′ = G1(w, z, v) ∈ s(U).

• a = F8(x, y). If a′ ∈ a, then a′ = x∗z where z ∈ y. Hence z ∈ U by
transitivity and a′ = G3(x, z, z) ∈ s(U).

• a = G0(x, y, z) = {{x}, {x, y}}. Then a ⊂ F ′′0 U2 ⊂ s(U).

• a = G1(x, y, z) = (x, y, z) = {{x}, {x, (y, z)}}. Then {x} = F0(x, x) ∈
s(U) and {x, (y, z)} = G2(x, y, z) ∈ s(U). QED (Lemma 2.3.2)

If we then set:
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De�nition 2.3.3. S(U) = s(U ∪ {U}) we get:

Corollary 2.3.3. S is a rud function such that

(a) U ∪ {U} ⊂ S(U)

(b)
⋃
n<ω

Sn(U) = Rud(U)

(c) If U is transitive, so is S(U).

We can then de�ne:

De�nition 2.3.4.
S0 = ∅
Sν+1 = S(Sν)
Sλ =

⋃
ν<λ

Sν for limit λ.

Obviously then: Jγ = Sγ for γ ∈ Lm. (It would be tempting to simply
de�ne Jν = Sν for all ν ∈ On. We avoid this, however, since it could lead to
confusion: At successors ν the models Sν do not have very nice properties.
Hence we retain the convention that whenever we write Jα we mean α to be
a limit ordinal.)

Each Jα has Σ1 knowledge of its own genesis:

Lemma 2.3.4. 〈Sν |ν < α〉 is uniformly Σ1(Jα).

Proof: y = Sν ↔
∨
f(ϕ(f) ∧ y = f(ν)), where ϕ(f) is the Σ0 formula:

f is a function ∧dom(f) ∈ On∧f(0) = ∅
∧
∧
ξ ∈ dom(f)(ξ + 1 ∈ dom(f)→ f(ξ + 1) = S(f(ξ)))

∧
∧
λ ∈ dom(f |(λ is a limit → f(λ) =

⋃
f ′′λ).

Thus it su�ces to show that the existence quanti�er can be restricted to Jα
� i.e.

Claim 〈Sν |ν < τ〉 ∈ Jα for τ < α.

Case 1 α = ω is trivial.

Case 2 α = β + ω, β ∈ Lm.
Then 〈Sν |ν < β〉 ∈ Def(Jβ) ⊂ Jα. Hence Sβ =

⋃
ν<β

Sν ∈ Jα. By rud

closure it follows that Sβ+n ∈ Jα for n ⊂ w. Hence S � ν ∈ Jα for
ν < α. QED (Case 2)
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Case 3 α ∈ Lm∗.
This case is trivial since if ν < β ∈ α ∩ Lm. Then S �ν ∈ Jβ ⊂ Jα.

QED (Lemma 2.3.4)

We now use our methods to show that each Jα has a uniformly Σ1(Jα) well
ordering. We �rst prove:

Lemma 2.3.5. There is a rud function w : V → V such that whenever r
is a well ordering of u, then w(u, r) is a well ordering of s(u) which end

extends r.

Proof: Let r2 be the r�lexicographic ordering of u2:

〈x, y〉r2〈z, w〉 ↔ (xrz ∨ (x = z ∧ yrw)).

Let r3 be the r�lexicographic ordering of u3. Set:

u0 = u, u1+i = F ′′i u
2 for i = 0, . . . , 8, u10+i = G′′i u

3 for i = 0, . . . , 3.

De�ne a well ordering wi of ui as follows: w0 = r, For i = 0, . . . , 9 set

xw1+iy ↔
∨
a, b ∈ u2(x = Fi(a) ∧ y = Fi(b)∧

∧ar2b ∧
∧
a′ ∈ u2(a′r2a→ x 6= Fi(a

′))∧
∧
∧
b′ ∈ u2(b′r2b→ y 6= Fi(b

′)))

For i = 0, . . . , 3 let w10+i have the same de�nitions with Gi in place of Fi
and u3, r3 in place of u2, r2.

We then set:

w = w(u) = {〈x, y〉 ∈ s(u)2|
13∨
i=0

((xwiy ∧ x, y /∈
⋃
h<i

un)∨

∨(x ∈
⋃
h<i un ∧ y /∈

⋃
n<i

un))}

(where
⋃
h<0

un = ∅). QED (Lemma 2.3.5)

If r is a well ordering of u, then

ru = {〈x, y〉|〈x, y〉 ∈ r ∨ (x ∈ u ∧ y = u)}

is a well ordering of u ∪ {u} which end extends r. Hence if we set:

De�nition 2.3.5. W (u, r) =: w(u ∪ {u}, ru).

We have:
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Corollary 2.3.6. W is a rud function such that whenever r is a well order-

ing of u, then W (u, r) is a well ordering of S(u) which end extends r.

If we then set:

De�nition 2.3.6.
<S0= ∅
<Sν+1= W (Sν , <Sν )
<Sλ=

⋃
ν<λ

<Sν for limit λ,

it follows that <Sα is a well ordering of Sα which end extends <Sν for all
ν < α.

De�nition 2.3.7. <α=<Jα=:<Sα for α ∈ Lm.

Then <α is a well ordering of Jα for α ∈ Lm.

By a close imitation of the proof of Lemma 2.3.4 we get:

Lemma 2.3.7. 〈<Sν |ν < α〉 is uniformly Σ1(Jα).

Proof:

y =<Sν↔
∨
f
∨
g(ϕ(f) ∧ ψ(f, g) ∧ y = g(ν))

where ϕ is as in the proof of Lemma 2.3.4 and ψ is the Σ0 formula:

g is a function ∧dom(g) = dom(f)
∧g(0 = ∅ ∧

∧
ξ ∈ dom(g)|ξ + 1 ∈ dom(g)→

→ g(ξ + 1) = W (f(ξ), g(ξ)))
∧
∧
λ ∈ dom(g) (λ is a limit → g(λ) =

⋃
g′′λ).

Just as before, we show that the existence quanti�ers can be restricted to
Jα. QED (Lemma 2.3.7)

But then:

Corollary 2.3.8. <α=
⋃
ν<α

<Sν is a well ordering of Jα which is uniformly

Σ1(Jα). Moreover <α end extends <ν for ν ∈ Lm, ν < α.

Corollary 2.3.9. uα is uniformly Σ1(Jα), where uα(x) ' {z|z <α x}.

Proof:

y = uα(x)↔
∨
ν(x ∈ Sν ∧ y = {z ∈ Sν |z <Sν x})
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QED (Corollary 2.3.9)

Note We shall often write <Jα for <α. We also write <∞ or <J or <L for⋃
α∈On

<α. Then <L well orders L and is an end extension of <α.

We obtain a particularly strong form of Gödel's condensation lemma:

Lemma 2.3.10. Let X ≺Σ1 Jα. Then there are α, π such that π : Jα
∼←→ X.

Proof: By �2 Lemma 2.2.19 there is rud closed U such that U is transitive
and π :

∼←→ X. Note that the condition

S(f, ν)↔: f = 〈Sξ|ν < ξ〉

is Σ0, since:

S(f, ν)↔ (f is a function ∧
∧dom(f) = ν ∧ f(0) = ∅ if 0 < ν∧∧
ξ ∈ dom(f)(ξ + 1 ∈ dom(f)→
→ f(ξ + 1) = S(f(ξ)))).

Let α = On∩U and let ν < α. Let π(ν) = ν. Then f = 〈Sξ|ξ < ν〉 ∈ X
since X ≺Σ1 Jα. Let π(f) = f . Then f = 〈Sξ|ξ < ν〉, since S(f, ν). But
then Jα =

⋃
ξ<α

Sξ ⊂ U . But since π is Σ1 preserving we know that

x ∈ U→
∨
f, ν ∈ U(S(f, ν) ∧ x ∈ Uf ′′ν)

→ x ∈ Jα.

QED (Lemma 2.3.10)

Corollary 2.3.11. Let π : Jα : Jα →Σ1 Jα. Then:

(a) ν < τ ↔ π(ν) < π(τ) for ν, τ < α.

(b) x <L y ↔ π(x) <L π(y) for x, y ∈ Jα.
Hence:

(c) ν ≤ π(ν) for ν < α.

(d) x ≤L π(x) for x ∈ Jα.

Proof: (a), (b) follow by the fact that < ∩J2
α and <L ∩J2

α =<α are uni-
formly Σ1(Jα). But if π(ν) < ν, then ν, π(ν), π2(ν), . . . would form an in�nite
decreasing sequence by (a). Hence (c) holds. Similarly for (d). QED
(Corollary 2.3.11)
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2.3.1 The JAα �hierarchy

Given classes A1, . . . , An on can generalize the previous construction by form-
ing the constructible hierarchy 〈JA1,...,An

α |α ∈ Γ〉 relativized to A1, . . . , An.
We have this far dealt only with the case n = 0. We now develop the case
n = 1, since the generalization to n > 1 is then entirely straightforward.
(Moreover the case n = 1 is su�cient for most applications.)

De�nition 2.3.8. Let A ⊂ V . 〈JAα |α ∈ Lm〉 is de�ned by:

JAα = 〈Jα[A],∈, A ∩ Jα[A]〉
Jω[A] = RudA(∅) = Hω

Jβ+ω[A] = RudA(Jβ) for β ∈ Lm

Jλ[A] =
⋃
ν<λ

Jν [A] for λ ∈ Lm∗

Note A ∩ Jα[A] is treated as an unary predicate.

Thus every JAα is rud closed. We set

De�nition 2.3.9.

L[A] = J [A] =
⋃

α∈On

Jα[A];

LA = JA = 〈L[A],∈, A ∩ L[A]〉.

Note that Jα[∅] = Jα for all α ∈ Lm.

Repeating the proof of Lemma 1.1.1 we get:

Lemma 2.3.12. rn(JAα ) = On∩JAα = α.

We wish to break JAα+ω into ω smaller steps, as we did with Jα+ω. To this
end we de�ne:

De�nition 2.3.10. SA(u) = S(u) ∪ {A ∩ u}.

Corresponding to Corollary 2.3.3 we get:

Lemma 2.3.13. SA is a function rud in A such that whenever u is transi-

tive, then:

(a) u ∪ {u} ∪ {A ∩ u} ⊂ S(u)
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(b)
⋃
n<ω

(SA)n(u) = RudA(u)

(c) S(u) is transitive.

Proof: (a) is immediate. (c) holds, since S(u) is transitive, a ⊂ S(u) and
A ∩ u ⊂ u. (b) holds since S(u) ⊃ u is transitive and A ∩ u ⊂ u. But if
we set: U = ω

n<ω
(SA)n(u), then U is rud closed and 〈U,A ∩U〉 is amenable.

QED (Lemma 2.3.13)

We then set:

De�nition 2.3.11.
SA0 = ∅
SAα+1 = SA(SAα )

SAλ =
⋃
ν<λ

SAν for limit λ.

We again have: Jα[A] = SAα for α ∈ Lm. A close imitation of the proof of
Lemma 2.3.4 gives:

Lemma 2.3.14. 〈SAν |r < α〉 is uniformly Σ1(JAα ).

Proof: This is exactly as before except that in the formula ϕ(f) we replace
S(f(ν)) by SA(f(ν)). But this is Σ0(JAα ), since:

x ∈ SA(u)↔ (x ∈ S(u) ∨ x = A ∩ u),

hence:
y =SA(u)↔

∧
z ∈ y z ∈ SA(u)

∧
∧
z ∈ S(u)z ∈ y ∧

∨
z ∈ y z = A ∩ u.

QED (Lemma 2.3.14)

We now show that JAα has a uniformly Σ1(JAα ) well ordering, which we call
<Aα or <JAα .

Set:

De�nition 2.3.12.

WA(u, r) ={〈x, y〉|〈x, y〉 ∈W (u, r)∨
(x ∈ S(u) ∧ y = A ∩ u /∈ S(u)}

If u is transitive and r well orders u, then WA(u, r) is a well ordering of
SA(u) which end extends r.

We set:
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De�nition 2.3.13.

<A0 = ∅
<Aν+1= WA(SAν , <

A
ν )

<Aλ=
⋃
ν<λ

<Aν for limit < .

Then <Aν is a well ordering of SAν which end extends <Aξ for ξ < ν. In

particular <Aα well orders JAα for α ∈ Γ. We also write: <JAα =:<Aα . We set:

<LA=<JA=<A∞=:
⋃
ν<∞

<Aν .

Just as before we get:

Lemma 2.3.15. 〈<Aν |ν < α〉 is uniformly Σ1(JAα ).

The proof is left to the reader. Just as before we get:

Lemma 2.3.16. <Aα and f(u) = {z|z <Aα u} are uniformly Σ1(JAα ).

Up until now almost everything we proved for the Jα hierarchy could be
shown to hold for the JAα hierarchy. The condensation lemma, however, is
available only in a much weaker form:

Lemma 2.3.17. Let X ≺Σ1 J
A
α . Then there are α, π,A such that

π : JAα
∼←→ X.

Proof: By Lemma 2.2.19 there is 〈U,A〉 such that π : 〈U,A〉 ∼←→ X and
〈U,A〉 is rud closed. As before, the condition

SA(f, ν)↔ f = 〈SAξ |ν < ξ〉

si Σ0 in A. Now let ν < α, π(ν) = ν. As before f = 〈Sξ|ξ < ν〉 ∈ X. Let

π(f = f . Then f = 〈SAξ |ξ < ν〉, since SA(f, ν). Then JAα ⊂
⋃
ξ<α

SAξ ⊂ U .

U ⊂ JAα then follows as before. QED (Lemma 2.3.17)

A sometimes useful feature of the JAα hierarchy is:

Lemma 2.3.18. x ∈ JAα → TC(x) ∈ JAα .

(Hence 〈TC(c)|x ∈ JAα 〉 is Π1(JAα ) since u = TC(x) is de�ned by:

u is transitive ∧x ⊂ u ∧
∧
v((v is transitive ∧x ⊂ v)→ u ⊂ v)
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Proof: By induction on α.

Case 1 α = ω (trivial)

Case 2 α = β + ω, β ∈ Lim.
Then every x ∈ JAα has the form f(~z) where z1, . . . , zn ∈ Jβ[A] ∪
{Jβ[A]} and f is rud in A. By Lemma 2.2.2 we have

⋃
pX ⊂

n⋃
i=1

TC(zi) ⊂ Jβ[A].

Hence TC(x) = Cp(x)∪ TC(
⋃n
i=1 TC(zi), where 〈TC(z)|z ∈ Jβ[A]〉 is

JAβ �de�nable, hence an element of JAα .

Case 3 α ∈ Lm∗ (trivial). QED (Lemma 2.3.18)

Corollary 2.3.19. If α ∈ Lm∗, then 〈TC(x)|x ∈ JAα 〉 is uniformly ∆1(JAα ).

Proof: We have seen that it is Π1(JAα ). But TC �JAα ∈ JAα for all β ∈ Lm∩α.
Hence u = TC(x) is de�nable in JAα by:∨

f(f is a function ∧ dom(f) is transitive ∧ u = f(x)
∧
∧
x ∈ dom(f)f(x) = x ∪

⋃
fnx)

QED (Corollary 2.3.19)

2.4 J�models

We can add further unary predicates to the structure J
~A
α . We call the struc-

ture:
M = 〈JA1,...,An

α , B1, . . . , Bn〉

a J�model if it is amenable in the sense that x ∩Bi ∈ J
~A
α whenever x ∈ J ~A

α

and i = 1, . . . ,m. The Bi are again taken as unary predicates. The type of
M is 〈n,m〉. (Thus e.g. Jα has type 〈0, 0〉, JAα has type 〈1, 0〉, and 〈Jα, B〉
has type 〈0, 1〉.) By an abuse of notation we shall often fail to distinguish
between M and the associated structure:

M̂ = 〈Jα[ ~A], A′1, . . . , A
′
n, B1, . . . , Bm〉

where A′i = Ai ∩ Jα[ ~A] (i = 1, . . . , n).
We may for instance write Σ1(M) for Σ1(M̂) or π : N →Σn M for π : N̂ →Σn

M̂ . (However, we cannot unambignously identify M with M̂ , since e.g. for
M = 〈JAα , B〉 we might have: M̂ = JA,Bα .)
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In practice we shall usually deal with J models of type 〈1, 1〉, 〈1, 0〉, or 〈0, 0〉.
In any case, following the precedent in earlier section, when we prove general
theorem about J�models, we shall often display only the proof for type 〈1, 1〉
or 〈1, 0〉, since the general case is then straightforward.

De�nition 2.4.1. If M = 〈J ~A
α , ~B〉 is a J�model and β ≤ α in Lm, we set:

M |β =: 〈J ~A
β , B1 ∩ J

~A
α , . . . , Bn ∩ J

~A
α 〉.

In this section we consider Σ1(M) de�nability over an arbitraryM = 〈J ~A
α , ~B〉.

If the context permits, we write simply Σ1 instead of Σ1(M). We �rst list
some properties which follow by rud closure alone:

• |=Σ1
M is uniformly Σ1, by Corollary 2.2.18 (Note 'Uniformly' here means

that the Σ1 de�nition is the same for any twoM having the same type.)

• If R(y, x1, . . . , xn) is a Σ1 relation, then so is
∨
yR(y, x1, . . . , xn) (since∨

y
∨
zP (yz, ~x)↔

∨
u
∨
y, z ∈ uP (y, z, ~x) whereR(y, ~x)↔

∨
zP (y, z, ~x)

and P is Σ0).

By an n�ary Σ1(M) function we mean a partial function onMn which
is Σ1(M) as an n+ 1�ary relation.

• If R,R′ are n�ary Σ1 relations, then so are R∩R′, R∪R′. (Since e.g.

(
∨
yP (y, ~x) ∧

∨
P ′(y, ~x))↔∨

yy′(P (y, ~x) ∧ P ′(y′, ~x)).)

• If R(y1, . . . , ym) is an n�ary Σ1 relation and fi(~x) is an n�ary Σ1 func-
tion for i = 1, . . . ,m, then so is the n�ary relation

R(~f(~x))↔:
∨
y1, . . . , ym(

m∧
i=1

yi = fi(~x) ∧R(~y)).

• If g(y1, . . . , ym) is an m�ary Σ1 function and fi(~x) is an n�ary Σ1

function for then h(~x) ' g(~f(~x)) is an n�ary Σ1 function. (Since

z = h(~x)↔
∨
y1,...,ym

(
m∧
i=1
yi = fi(~x) ∧ z = g(~y)).)

Since f(x1, . . . , xn) = xi is Σ1 function, we have:

• If R(x1, . . . , xn) is Σ1 and σ : n→ m, then

P (z1, . . . , zm)↔: R(zσ(1), . . . , zσ(n))

is Σ1.
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• If f(x1, . . . , xn) is a Σ1 function and σ : n→ m, then the function:

g(z1, . . . , zm) ': f(zσ(1), . . . , zσn)

in Σ1.

J�models have the further property that every binary Σ1 relation is uni-
formizable by a Σ1 function. We de�ne

De�nition 2.4.2. A relation R(y, ~x) is uniformized by the function F (~x)
i� the following hold:

•
∨
yR(y, ~x)→ F (~x) is de�ned

• If F (~x) is de�ned, then R(F (~x), ~x)

We shall, in fact, prove thatM has a uniformly Σ1 de�nable Skolem function.
We de�ne:

De�nition 2.4.3. h(i, x) is a Σ1�Solem function for M i� h is a Σ1(M)
partial map from ω ×M to M and, whenever R(y, x) is a Σ1(M) relation,
there is i < ω such that hi uniformizes R, where hi(x) ' h(i, x).

Lemma 2.4.1. M has a Σ1�Skolem function which is uniformly Σ1(M).

Proof: |=Σ1
M is uniformly Σ1. Let 〈ϕi|i < ω〉 be a recursive enumeration of

the Σ1 formulae in which at most the two variables v0, v1 occur free. Then
the relation:

T (i, y, z)↔:|=Σ1
M ϕi[y, x]

is uniformly Σ1. But then for any Σ1 relation R there is i < ω such that

R(y, x)↔ T (i, y, x).

Since T is Σ1, it has the form:∨
zT ′(z, i, y, x)

where T ′ is Σ0. Writing <M for <
~A
α , we de�ne:

y = h(i, x)↔
∨
z(〈z, y〉 is the <M �least

pair 〈z′, y′〉 such that T ′(z′, i, y′, x).

Recalling that the function f(x) = {z|z <M x} is Σ1, we have:

y =h(i, x)↔
∨
z
∨
u(T ′(z, i, y, x)∧

∧u = {w|w <n 〈z, y〉}∧
∧
∧
〈z′, y′〉 ∈ u¬T ′(z, i, y, x))
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QED 2.4.1

We call the function h de�ned above the canonical Σ1 Skolem function forM
and denote it by hM . The existency of h implies that every Σ1(M) relation
is uniformizable by a Σ1(M) function:

Corollary 2.4.2. Let R(y, x1, . . . , xn) be Σ1. R is uniformizable by a Σ1

function.

Proof: Let hi uniformize the binary relation

{〈y, z〉|
∨
x1 . . . xn(R(y, ~x) ∧ z = 〈x1, . . . , xn〉)}.

Then f(~x) ': hi(〈~x〉) uniformizes R. QED

We say that a Σ1(M) function has a functionally absolute de�nition if it
has a Σ1 de�nition which de�nes a function over every J�model of the same
type.

Corollary 2.4.3. Every Σ1(M) function g has functionally absolute de�ni-

tion.

Proof: Apply the construction in Corollary 2.4.2 to R(y, ~x) ↔ y = g(~x).
Then f(x) ': hi(〈~x〉) is functionally absolute since hi is.

QED (Corollary 2.4.2)

Lemma 2.4.4. Every x ∈M is Σ1(M) in parameters from On∩M .

Proof: Wemust show: x = f(ξ1, . . . , ξn) where f is Σ1(M). IfM = 〈J ~A
α , ~B〉,

it obviously su�ces to show it for the model M ′ = J
~A
α . For the sake of

simplicity we display the proof for JAα . (i.e. M has type 〈1, 0〉). We proceed
by induction on α ∈ Γ.

Case 1 α = ω.
Then Jα = Rud(∅) and x = f({0}) where f is rudimentary.

Case 2 α = β + ω, β ∈ Lm.
Then x = f(z1, . . . , zn, J

A
β ) where z1, . . . , zn ∈ JAβ and f is rud in A.

(This is meant to include the case: n = 0 and x = f(JAβ ).) By the

induction hypothesis there are ~ξ ∈ β such that zi = gi(~ξ) (i = 1, . . . , n)
and gi is Σ1(JAβ ). For each i pick a functionally absolute Σ1 de�nition

for gi and let g′i be Σ1(JAα ) by the same de�nition. Then zi = g′i(
~ξ)

since the condition is Σ1. Hence x = f ′(~ξ, β) = f(~g′(ξ, JAβ ) where f ′ is
Σ1. QED (Case 2)
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Case 3 α ∈ Lm∗.
Then x ∈ JAβ for a β < α. Hence x = f(~ξ) where f is Σ1(JAβ ). Pick

a functionally absolute Σ1 de�nition of f and let f ′ be Σ1(JAα ) by the
same de�nition. Then x = f ′(~ξ). QED (Lemma 2.4.4)

But being Σ1 in parameters from On∩M is the same as being Σ1 in a �nite
subset of On∩M :

Lemma 2.4.5. Let x = f(~ξ) where f is Σ1(M). Let a ⊂ On∩M be �nite

such that ξ1, . . . , ξn ∈ a. Then x = g(a) for a Σ1(M) function g.

Proof: Set:

ki(a) =


the i�th element of a in order
of size if a ⊂ On is �nite
and card(a) > i,
unde�ned if not.

Then ki is Σ1(M) since:

y = ki(a)↔
∨
f
∨
n < ω(f : n↔ a ∧

∧
i, j < n(f(i) < f(j)↔ i < j)

∧a ⊂ On∧y = f(i))

Thus x = f(ki1(a), . . . , kin(a)) where ξl = kil(a) for l = 1, . . . , n.
QED (Lemma 2.4.5)

We now show that for every J�model M there is a Σ1(M) partial map of
On∩M onto M . As a preliminary we prove:

Lemma 2.4.6. There is a partial Σ1(M) map of On∩M onto (On∩M)2.

Proof: Order the class of pairs On2 by setting: 〈α, β〉 <∗ 〈γ, δ〉 i�
〈max(α, β), α, β〉 is lexicographically less than 〈max(γ, δ), γ, δ〉. This order-
ing has the property that the collection of predecessors of any pair form a
set. Hence there is a function p : On → On2 which enumerates the pairs in
order <∗.

Claim 1 p�OnM is Σ1(M).

Proof: If M = 〈J ~A
α ,

~B〉, it su�ces to prove it for J
~A
α . To simplify

notation, we assume: M = JAα for an A ⊂M (i.e. M is of type 〈1, 0〉.)

We know:

y = p(ν)↔
∨
f(ϕ(f) ∧ y = f(ν))
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where ϕ is the Σ0 formula:

f is a function ∧ dom(f) ∈ On∧
∧
∧
u ∈ rng(f)

∨
β, γ ∈ Cn(u)u = 〈β, γ〉∧

∧
∧
ν, τ ∈ dom(f)(ν < τ ↔ f(ν) <∗ f(τ))

∧
∧
u ∈ rng(f)

∧
µ, ξ ≤ max(u)(〈µ, ξ〉 <∗ u→ 〈µ, ξ〉 ∈ rng(f)).

Thus it su�ces to show that the existence quanti�er can be restricted
to JAα � i.e. that p�ξ ∈ JAα for ξ < α. This follows by induction on α
in the usual way (cf. the proof of Lemma 2.3.14). QED (Claim 1)

We now proceed by induction on α = OnM , considering three cases:

Case 1 p(α) = 〈0, α〉.
Then p�α maps α onto

{u|u <∗ 〈0, α〉} = α2

and we are done, since p�α is Σ1(JAα ). (Note that ω satis�es Case 1.)

Case 2 α = β + ω, β ∈ Lm and Case 1 fails.
There is a Σ1(JAα ) bijection of β onto α de�ned by:

f(2n) = β + n for n < ω
f(2n+ 1) = n for n < ω
f(ν) = ν for ω ≤ ν < β

Let g be a Σ1(JAβ ) partial map of β onto β2. Set (〈γ0, γ1〉)i = γi for
i = 0, 1.

gi(ν) ' (g(ν))i(i = 0, 1).

Then f(ν) ' 〈fg0(ν, fg1(ν)〉 maps β onto α2. QED (Case 2)

Case 3 The above cases fail.
Then p(α) = 〈ν, τ〉, where ν, τ < α. Let γ ∈ Lm such that max(ν, τ) <
γ < α. Let g be a partial Σ1(JAα ) map of γ onto γ2. Then g ∈M,p−1

is a partial map of γ2 onto α; hence f = p−1 ◦ g is a partial map of

γ onto α. Set:
∼
f(〈ξ, δ〉) ' 〈f(ξ), f(δ)〉 for ξ, δ, γ. Then

∼
fg is a partial

map of γ onto α2. QED (Lemma 2.4.6)

We can now prove:

Lemma 2.4.7. There is a partial Σ1(M) map of OnM onto M .
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Proof: We again simplify things by takingM = JAα . Let g be a partial map
of α onto α2 which is Σ1(JAα ) in the parameters p ∈ JAα . De�ne "ordered
pairs" of ordinals < α by:

(ν, τ) =: g−1(〈ν, τ〉).

We can then, for each n ≥ 1, de�ne "ordered n�tuples" by:

(ν) =: ν, (ν1, . . . , νn) = (ν1, (ν2, . . . , νn))(n ≥ 2).

We know by Lemma 2.4.4 that every y ∈ JAα has the form: y = f(ν1, . . . , νn)
where ν1, . . . , νn < α and f is Σ1(JAα ). De�ne a function f∗ by:

y = f∗(τ)↔
∨
ν1, . . . , νn(τ = (ν1, . . . , νn)∧

∧y = f(ν1, . . . , νn)).

Then f∗ is Σ1(JAα ) in p and y ∈ f∗′′α. If we set: h∗(i, x) ' h(i, 〈x, p〉),
then each binary relation which is Σ1(JAα ) in p is uniformized by one of the
functions h∗i (x) ' h∗(i, x). Hence y = h∗(i, γ) for some γ < α. Hence
JAα = h∗′′(ω × α). But, setting:

y = ĥ(µ)↔
∨
i, ν(µ = (i, ν) ∧ y = h∗(i, ν))

we see that ĥ is Σ1(JAα ) in p and y ∈ ĥ′′α. Hence JAα = ĥ′′α, where ĥ is
Σ1(JAα ) in p. QED (Lemma 2.4.7)

Corollary 2.4.8. Let x ∈M . There are f, γ ∈ JAα such that f maps γ onto

x.

Proof: We again prove it for M = JAα . If α = ω it is trivial since JAα = Hω.
If α ∈ Lm∗ then x ∈ JAβ for a β < α and there is f ∈ JAα mapping β onto

JAβ by Lemma 2.4.7. There remains only the case α = β + ω where β is a
limit ordinal. By induction on n < ω we prove:

Claim There is f ∈ JAα mapping β onto SAβ+n. If n = 0 this follows by
Lemma 2.4.7.

Now let n = m+ 1.
Let f : β

onto−→ SAβ+m and de�ne f ′ by f ′(0) = SAβ+m, f
′(n + 1) = f(n) for

n < ω, f ′(ξ) = f(ξ) for ξ ≥ ω. Then f ′ maps β onto U = SAβ+m ∪ {SAβ+m}

and SAβ+m =
8⋃

δ=β

F ′′i U
2 ∪

3⋃
i=0
G′′iU

3 ∪ {A ∩ SAβ+m}.

Set:

gi = {〈Fi(f ′(ξ), f ′(ζ)), 〈i, 〈ξ, ζ〉〉〉|ξ, ζ < β}
for i = 0, . . . , 8
g8+i+1 = {〈Gi|f ′(ξ), f ′(ζ), f ′(µ)), 〈8 + i+ 1, 〈ξ, ζ, µ〉〉|ξ, ζ, µ < β}
for i = 0, . . . , 3
g13 = {〈A ∩ SAβ+m〈13, ∅〉〉}
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Then g =
13⋃
i=0
gi ∈ JAα is a partial map of JAβ onto SAβ+n and gh ∈ JAα is a

partial map of β onto SAβ . QED (Corollary 2.4.8)

De�ne the cardinal of x in M by:

De�nition 2.4.4. x = x
M

=: the least γ such that some f ∈ M maps γ
onto x.

(Note this is a non standard de�nition of cardinal numbers. If M is e.g. pr
closed, we get that there is f ∈M bijecting x onto x.)

De�nition 2.4.5. Let X ⊂ M . h(X) = hM (X) =: The set of all y ∈ M
such that y = f(x1, . . . , xn), where x1, . . . , xn ∈ X and f is a Σ1(M) function

Since Σ1(M) functions are closed under composition, it follows easily that
Y = h(X) is closed under Σ1(M) functions.

By Corollary ?? we then have:

Lemma 2.4.9. Let Y = h(X). Then M |Y ≺Σ1 M where

M |Y =: 〈Y,A1 ∩ Y, . . . , An ∩ Y,B1 ∩ Y, . . . , Bm ∩ Y 〉.

(Note We shall often ignore the distinction between Y and M |Y , writing
simply: Y ≺Σ1 M .)

If f is a Σ1(M) function, there is i < ω such that h(i, 〈~x〉) ' f(~x). Hence:

Corollary 2.4.10. h(X) =
⋃
n<ω

h′′(ω ×Xn).

There are many cases in which h(X) = h′′(ω ×X), for instance:

Corollary 2.4.11. h({x}) = h′′(ω × {x}).

Gödels pair function on ordinals is de�ned by:

De�nition 2.4.6. ≺ γ, δ �=: p−1(≺ γ, δ �), where p is the function de�ned
in the proof of Lemma 2.4.6.

We can then de�ne Gödel n�tuples by iterating the pair function:

De�nition 2.4.7. ≺ γ �=: γ;≺ γ1, . . . , γn �=:≺ γ1,≺ γ2, . . . , γn �� (n ≥
2).
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Hence any X which is closed under Gödel pairs is closed under the tuple�
function. Imitating the proof of Lemma 2.4.7 we get:

Corollary 2.4.12. If Y ⊂ OnM is closed under Gödel pairs, then:

(a) h(Y ) = h′′(ω × Y )

(b) h(Y ∪ {p}) = h′′(ω × (Y × {p}) for p ∈M .

Proof: We display the proof of (b). Let y ∈ h(Y ∪ {p}). Then y =
f(γ1, . . . , γn, p), where γ1, . . . , γn ∈ Y and f is Σ1(M).

Hence y = f∗(〈δ, p〉) where δ =≺ γ1, . . . , γn � and

y = f∗(z)↔
∨
γ1, . . . , γn

∨
p(z = 〈≺ γ1, . . . , γn �, p〉∧

∧y = f(~γ, p)).

Hence y = h(i, 〈δ, p〉) for some i. QED (Corollary 2.4.12)

Similarly we of course get:

Corollary 2.4.13. If Y ⊂M is closed under ordered pairs, then:

(a) h(Y ) = h′′(ω × Y )

(b) h(Y ∪ {p}) = h′′(ω × (Y × {p}) for p ∈M .

By Lemma 2.4.5 we easily get:

Corollary 2.4.14. Let Y ⊂ OnM . Then h(Y ) = h′′(ω × Pω(Y )).

In fact:

Corollary 2.4.15. Let A ⊂ Pω(OnM ) be directed (i.e. a, b ∈ A →
∨
c ∈

A a, b ⊂ c). Let Y =
⋃
A. Then h(Y ) = h′′(ω ×A).

By the condensation lemma we get:

Lemma 2.4.16. Let π : M →Σ1 M where M is a J�model and M is

transitive. Then M is a J�model.

Proof: M is amenable by Σ1 preservation. But then it is a J�model by the
condensation lemma. QED (Lemma 2.4.16)

We can get a theorem in the other direction as well. We �rst de�ne:
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De�nition 2.4.8. Let M,M be transitive structures. σ : M →M co�nally

i� σ is a structural embedding of M into M and M =
⋃
σ′′M .

Then:

Lemma 2.4.17. If σ : M →Σ0 M co�nally. Then σ is Σ1 preserving.

Proof: Let R(y, ~x) be Σ0(M) and let R(y, ~x) be Σ0(M) by the same de�ni-
tion. We claim: ∨

yR(y, σ(~x))→
∨
yR(y, ~x)

for x1, . . . , xn ∈M . To see this, let R(y, σ(~x)). Then y ∈ σ(u) for a u ∈M .
Hence

∨
y ∈ σ(u)R(y, σ(~x)), which is a Σ0 statement about σ(u), σ(~x).

Hence
∨
y ∈ uR(y, ~x). QED (Lemma 2.4.17)

Lemma 2.4.18. Let σ : M →Σ0 M co�nally, where M is a J�model. Then

M is a J�model.

Proof: Let e.g. M = 〈JAα 〉,M = 〈U,A,B〉.

Claim 1 U = JAα where α = OnM .

Proof: y = SA �ν is a Σ0 condition, so σ(SA �ν) = SA �σ(ν). But σ
takes α co�nally to α, so if ξ < α, ξ < σ(ν), then SAξ (SA �σ(ν))(ξ) ∈ U .
Hence JAα ⊂ U . To see U ⊂ JAα , let x ∈ U . Then x ∈ σ(u) where

u ∈ JAα . Hence u ⊂ SAν and x ∈ σ(SAν ) = SAσ(ν) ⊂ J
A
α . QED (Claim 1)

Claim 2 M is amenable.

Let x ∈ SAσ(ν). Then σ(B∩SAν ) = B∩SAσ(ν) and x∩B = (B∩SAν )∩x ∈
U , since SAν is transitive. QED (Lemma 2.4.18)

Lemma 2.4.19. Let M,M be J�models. Then σ : M →Σ0 M co�nally i�

σ : M →Σ0 M and σ takes OnM to OnM co�nally.

Proof: (→) is obvious. We prove (←). The proof of σ(SAν ) = SAσ(ν) goes

through as before. Thus if x ∈M , we have x ∈ SAξ for some ξ. Let ξ ≤ σ(ν).

Then x ∈ SAσ(ν) = σ(SAν ). QED (Lemma 2.4.19)
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2.5 The Σ1 projectum

2.5.1 Acceptability

We begin by de�ning a class of J�models which we call acceptable. Every
Jα is acceptable, and we shall see later that there are many other naturally
occurring acceptable structures. Accepability says essentially that if some-
thing dramatic happens to β at some later stage ν of the construction, then
ν is, in fact, collapsed to β at that stage:

De�nition 2.5.1. J
~A
α is acceptable i� for all β ≤ ν < α in Lm we have:

(a) If a ⊂ β and a ∈ J ~A
ν+ω \ J

~A
ν , then ν ≤ β in J

~A
ν+ω.

(b) If x ∈ J
~A
β and ψ is a Σ1 condition such that J

~A
ν+ω |= ψ[β, x] but

J
~A
ν 6|= ψ[β, x], then ν ≤ β in J

~A
ν+ω.

A J�model 〈J ~A
α ,

~B〉 is acceptable i� J
~A
α is acceptable.

Note 'Acceptability' referred originally only to property (a). Property (b)
was discovered later and was called 'Σ1 acceptability'.

In the following we shall always supposeM to be acceptable unless otherwise
stated. We recall that by Corollary 2.4.8 every x ∈M has a cardinal x = x

M
.

We call γ a cardinal in M i� γ = γ (i.e. no smaller ordinal is mappable onto
γ in M).

Lemma 2.5.1. Let M = 〈JAα , B〉 be acceptable. Let γ > ω be a cardinal in

M . Then:

(a) γ ∈ Lm∗

(b) JAγ ≺Σ1 J
A
α

(c) x ∈ JAγ →M ∩ P(x) ⊂ JAγ .

Proof: We �rst prove (a). Suppose not. Then γ = β+ω, where β ∈ Lm, β ≥
ω. Then f ∈M maps β onto γ where: f(2i) = i, f(2i+ 1) = β + i, f(ξ) = ξ
for ξ ≥ ω.
Contradiction! QED (a)

If (b) were false, there would be ν such that γ ≤ ν < α, and for some x ∈ JAγ
and some Σ1 formula ψ we have:

JAν+ω |= ψ[x], JAν |= ¬ψ[x].
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But then x ∈ JAβ for some β < γ in Lm. Hence γ ≤ ν ≤ β.
Contradiction! QED (b)

To prove (c) suppose not. Then x is not �nite. Let β = x in JAγ . Then

β ≥ ω, β ∈ Lm by (a). Let f ∈ JAγ map β onto x. Let u ⊂ x such that

u /∈ JAγ . Then v = f−1′′u /∈ JAγ . Let ν ≥ γ such that v ∈ JAν+1 \ JAν . Then
γ ≤ ν ≤ β.
Contradiction! QED (Lemma 2.5.1)

Remark We have stated and proven this lemma for M of type 〈1, 1〉, since
the extension to M of arbitrary type is self evident.

The most general form of GCH says that if P(x) exists and x ≥ ω, then

P(x) = x
+
(where α+ is the least cardinal > α).

As a corollary of Lemma 2.5.1 we have:

Corollary 2.5.2. Let M,γ be as above. Let a ∈M,a ⊂ JAγ . Then:

(a) 〈JAγ , a〉 models the axiom of subsets and GCH.

(b) If γ is a successor cardinal in M , then 〈JAγ , a〉 models ZFC−.

(c) If γ is a limit cardinal in M , then 〈JAγ , a〉 models Zermelo set theory.

Proof: (a) follows easily from Lemma 2.5.1 (c). (c) follows from (a) and rud
closure of JAγ . We prove (b). We know that JAγ is rud closed and that the
axiom of choice holds in the strong form:

∧
x
∨
ν
∨
f f maps ν onto x. We

must prove the axiom of collection. Let R(x, y) be Σω(JAγ ) and let u ∈ JAγ
such that

∧
x ∈ u

∨
yR(x, y).

Claim
∨
ν < γ

∧
x ∈ u

∨
y ∈ JAν R(x, y). Suppose not.

Let y = β+ in M . For each ν < γ there is a partial map f ∈M of β onto ν.
But then f ∈ JAγ since f ⊂ ν × β ∈ JAγ . Set fν � the <JAγ � least such f .
For x ∈ u set:

h(x) = the least µ such that
∨
y ∈ JAµ R(y, x).

Then suph′′u = γ by our assumption. De�ne a partial map k on u× β by:
k(x, ξ) ' fh(x)(ξ). Then k is onto γ. But k ∈M , since k is Σ1(JAγ ). Clearly

u× β = β in M , so γ ≤ β < γ in M .
Contradiction! QED (Corollary 2.5.2)
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Corollary 2.5.3. Let M,γ be as above. Then

JAγ = HM
γ =:

⋃
{u ∈M |u is transitive ∩ u < γ in M}.

Proof: Let u ∈ M be transitive and u < γ in M . It su�ces to show that
u ∈ JAγ . Let ν = u < γ in M . Let f ∈M map ν onto u. Set:

r = {〈ξ, δ〉 ∈ ν2|f(ξ) ∈ f(δ)}.

Then r ∈ JAγ by Lemma 2.5.1 (c), since ν2 ∈ JAγ . Let β = ν
+

= the

least cardinal > ν in M . then JAβ models ZFC− and r, ν ∈ JAβ . But then

f ∈ JAβ ⊂ JAγ , since f is de�ned by recursion on r : f(x) = f ′′r′′{x} for

x ∈ ν. Hence u = rng(f) ∈ JAγ . QED (Corollary 2.5.3)

Lemma 2.5.4. If π : M →Σ1 M and M is acceptable, then so is M .

Proof: M is a J�model by �4. Let e.g. M = JAα ,M = JAα . Then M has a
counterexample � i.e. there are ν < α, β < ν, a such that card(ν) > β in

Jν+ω and either a ⊂ β and a ∈ JA
ν+ω \ JAν or else a ∈ JAβ , JAν+1 |= ψ[a, β] and

JAν |= ¬ψ[a, β], where ψ is Σ1. But then letting π(β, ν, a) = β, ν, a it follows
easily that β, ν, a is a counterexample in M .
Contradiction! QED (Lemma 2.5.4)

Lemma 2.5.5. If π : M →Σ0 M co�nally and M is acceptable, then so is

M .

Proof: M is a J�model by �4. Let M = JAα ,M = JAα .

Case 1 α = ω.
Then M = M = JAω , π = id.

Case 2 α ∈ Lm∗.
Then 'M is acceptable' is a Π1(M) condition. But then α ∈ Lm∗ and
M must satisfy the same Π1 condition.

Case 3 a = β + ω, β ∈ Lm.
Then α = β + ω, β ∈ Lm and β = π(β). Then JAβ = π(JA

β
) is

acceptable, so there can be no counterexample 〈δ, ν, a〉 ∈ JAβ .

We show that there can be no counterexample of the form 〈δ, β, a〉. Let
γ = card(β) in M . The statement card(β) ≤ γ is Σ1(M). Hence card(β) ≤
γ = π(γ) in M . Hence there is no counterexample 〈δ, β, a〉 with δ ≥ γ.
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But since M is acceptable and γ ≤ β is a cardinal in M , the following Π1

statements hold in M by Lemma 2.5.1∧
δ < γ

∧
a ⊂ δa ∈ JAγ∧

δ < γ
∧
x ∈ JAδ (

∨
yR(x, δ)→

∨
y ∈ JAγ )

where R is Σ0(M).

But then the corresponding statements hold inM . Hence 〈δ, β, a〉 cannot be
a counterexample for δ < γ. QED (Lemma 2.5.5)

2.5.2 The projectum

We now come to a central concept of �ne structure theory.

De�nition 2.5.2. Let M be acceptable. The Σ1�projectum of M (in sym-
bols ρM ) is the least ρ ≤ OnM , such that there is a Σ1(M) set a ⊂ ρ with
a /∈M .

Lemma 2.5.6. Let M = 〈JAα , B〉, ρ = ρM . Then

(a) If ρ ∈M , then ρ is cardinal in M .

(b) If D is Σ1(M) and D ⊂ JAρ , then 〈JAρ , D〉 is amenable.

(c) If u ∈ JAρ , there is no Σ1(M) partial map of u onto JAρ .

(d) ρ ∈ Lim∗

Proof:

(a) Suppose not. Then there are f ∈ M , γ < ρ such that f maps γ onto ρ.
Let a ⊂ ρ be Σ1(M) such that a /∈ M . Set ã = f−1′′a. Then ã is Σ1(M)
and ã ⊂ γ. Hence ã ∈M . But then a = f ′′ã ∈M by rud closure.
Contradiction! QED (a)

(b) Suppose not. Let u ∈ JAρ such that D ∩ u /∈ JAρ . We �rst note:

Claim D ∩ u /∈M .
If ρ = α this is trivial, so let ρ < α. Then ρ is a cardinal by (b) and
by Lemma 2.5.1 we know that P(u) ∩M ⊂ JAρ . QED (Claim)

By Corollary 2.5.2 there is f ∈ JAρ mapping a ν < ρ onto D ∩ u. Then
d = f−1u(D ∩ u) is Σ1(M) and d ⊂ ν < ρ. Hence d ∈ M . Hence D ∩ u =
f ′′d ∈M by rud closure. QED (b)
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(c) Suppose not. Let f ba a counterexample. Set a = {x ∈ u|x ∈ dom(f) ∧
x /∈ f(x)}. Then a is Σ1(M), a ⊂ u ∈ M . Hence a ∈ JAρ by (b). Let
a = f(x). Then x ∈ f(x)↔ x /∈ f(x).
Contradiction! QED (c)

(d) If not, then ρ = β+ω where β ∈ Lim. But then there is a Σ1(M) partial
map of β onto ρ, violating (c). QED (Lemma 2.5.6)

Remark This shows that we could have de�ned ρ to be least such that there
is a Σ1(M) set a ⊂ JAρ with a /∈M .

Remark We have again stated and proven the theorem for the special case
M = 〈JAα , B〉, since the general case is then obvious. We shall continue
this practice for the rest of the book. A good parameter is a p ∈ M which
witnesses that ρ = ρM is the projectum � i.e. there is B ⊂ M which is
Σ1(M) in p with B∩HM

ρ /∈M . But by �3 any p ∈M has the form p = f(a)
where f is a Σ1(M) function and a is a �nite set of ordinals. Hence a is good
if p is. For technical reasons we shall restrict ourselves to good parameters
which ar �nite sets of ordinals:

De�nition 2.5.3. P = PM =: The set of p ∈ [OnM ]<ω which are good
parameters.

Lemma 2.5.7. If p ∈ P , then p \ ρM ∈ P .

Proof: It su�ces to show that if ν = min(p) and ν < ρ, then p′ = p\(ν+1) ∈
P . Let B be Σ1(M) in p such that B ∩ HM

ρ /∈ M . Let B(x) ↔ B′(x, p)
where B′ is Σ1(M).

Set:
B∗(x)↔:

∨
z
∨
ν(x = 〈z, ν〉 ∧B′(z, p′ ∪ {ν})).

Then B∗ ∩Hρ /∈M , since otherwise

B ∩Hρ = {x|〈x, ν〉 ∈ B∗ ∩Hρ} ∈M.

Contradiction! QED (Lemma 2.5.7)

For any p ∈ [OnM ]<ω we de�ne the standard code T p determined by p as:

De�nition 2.5.4.

T p = T pM =: {〈i, x〉| |=M ϕi[x, p]} ∩HM
ρM
}

where 〈ϕi|i < ω〉 is a �xed recursive enumeration of the Σ1�fomulae.

Lemma 2.5.8. p ∈ P ↔ T p /∈M .
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Proof:

(←) T p = T ∩HM
p for a T which is Σ1(M) in p.

(→) Let B be Σ1(M) in p such that B ∩HM
p /∈M . Then for some i:

B(x)↔ 〈i, x〉 ∈ T p

for x ∈ HM
p . Hence T p /∈M . QED (Lemma 2.5.8)

A parameter p is very good if every element of M is Σ1 de�nable from
parameters in ρM ∪ {p}. R is the set of very good parameters lying in
[OnM ]<ω.

De�nition 2.5.5. R = RM =: the set of r ∈ [OnM ]<ω such that M =
hM (ρM ∪ {r}).

Note This is the same as saying M = hM (ρM ∪ r), since

h(ρ ∪ r) = h′′(ω × [ρ ∪ r]ω).

But ρ ∪ r = ρ ∪ (r \ ρ). Hence:

Lemma 2.5.9. If r ∈ R, then r \ ρ ∈ R. We also note:

Lemma 2.5.10. R ⊂ P .

Proof: Let r ∈ R. We must �nd B ⊂ M such that B is Σ1(M) in r and
B ∩HM

ρ /∈M . Set:

B = {〈i, x〉|
∨
y y = h(i, 〈x, r〉) ∧ 〈i, x〉 /∈ y}.

If b = B ∩ HM
ρ ∈ M , then b = h(i, 〈x, r〉) for some i. Then 〈i, x〉 ∈ b ↔

〈i, x〉 /∈ b.
Contradiction! QED (Lemma 2.5.10)

However, R can be empty.

Lemma 2.5.11. There is a function hr uniformly Σ1(M) in r such that

whenever r ∈ RM , then M = hr ′′ρM .

Proof: Let x ∈ M . Since x ∈ h(ρ ∪ {r}) there is an f which is Σ1(M)
n r such that x = f(ξ1, . . . , ξn). But ρ is closed under Gödel pairs, so
x = f ′(≺ ξ1, . . . , ξn �), where

x = f ′(ξ)↔
∨
ξ1, . . . , ξn(ξ =≺ ~ξ � ∧x = f(~ξ)).
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f ′ is Σ1(M) in r. Hence x = h(i, 〈〈~ξ〉, r〉) for some i < ω. Set

x = hr(δ)↔
∨
ξ
∨
i < ω(δ = 〈i, ξ〉 ∧ x = h(i, 〈ξ, r〉)).

Then x = hr(〈i, 〈~ξ〉〉). QED (Lemma 2.5.11)

Lemma 2.5.11 explains why we called T p a code: If r ∈ R, then T r gives com-
plete information about M . Thus the relation ∈′= {〈x, τ〉|hr(ν) ∈ hr(τ)}
is rud in T r, since ν ∈′ τ ↔ 〈i, 〈ν, τ〉〉 ∈ T r for some i < ω. Similarly,

if M = 〈J ~A
α , ~B〉, then A′i = {ν|hr(ν) ∈ Ai} and B′j = {ν|hr(ν) ∈ Bi} are

similary rud in T r (as is, indeed, R′ whenever R is a relation which is Σ1(M)
in p). Note, too, that if B ⊂ HM

ρ is Σ(M), then B is rud in T r. However, if
p ∈ P 1 \R1, then T p does not completely code M .

De�nition 2.5.6. Let p ∈ [OnM ]<ω. Let M = 〈J ~A
α , ~B〉.

The reduct of M by p is de�ned to be

Mp =: 〈J ~A
ρM
, T pM 〉.

ThusMp is an acceptable model which� if p ∈ RM � incorporates complete
information about M .

The downward extension of embeddings lemma says:

Lemma 2.5.12. Let π : N →Σ0 Mp where N is a J�model and p ∈
[OnM ]<ω.

(a) There are unique M,p such that M is acceptable, p ∈ RM , N = M
p
.

(b) There is a unique π̃ ⊃ π such that π̃ : M →Σ0 M and π(p) = p.

(c) π̃ : M →Σ1 M .

Proof: We �rst prove the existence claim. We then prove the uniqueness
claimed in (a) and (b).

Let e.g. M = 〈JAα , B〉,Mp = 〈JAρ , T 〉, N = 〈JAρ , T 〉. Set: ρ̃ = supπ′′ρ, M̃ =

Mp|ρ̃ = 〈JAρ̃ , T̃ 〉 where T̃ = T ∩ JAρ̃ . Set X = rng(π), Y = hM (X ∪ {p}).
Then π̃ : N →Σ0 M̃ co�nally by �4.

(1) Y ∩ M̃ = X
Proof: Let y ∈ Y ∩M̃ . Since X is closed under ordered pairs, we have
y = f(x, p) where x ∈ X and f is Σ1(M). Then

y = f(x, p) ↔|=M ϕi[〈y, x〉, p]

↔ 〈i, 〈y, x〉〉 ∈ T̃ .
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Since X ≺Σ1 M̃ , there is y ∈ X such that 〈i, 〈y, x〉〉 ∈ T̃ . Hence
y = f(x, ρ) ∈ X. QED (1)

Now let π̃ : M↔̃Y , where M is transitive. Clearly p ∈ Y , so let
π̃(p) = p. Then:

(2) π̃ : M →Σ1 M, π̃ �N = π, π̃(p) = p.
But then:

(3) M = hM (N ∪ {p}).
Proof: Let y ∈ M . Then π̃(y) ∈ Y = hM

′′(ωx(Xx{p})), since X
is closed under ordered pairs. Hence π̃(y) = hM (i, 〈π(x), p〉) for an
x ∈M . Hence y = hM (i, 〈x, p). QED (3)

(4) ρ ≥ ρM .
Proof: It su�ces to �nd a Σ1(M) set b such that b ⊂ N and b /∈ M .
Set

b = {〈i, x〉 ∈ ω ×N |
∨
y (y = hM (i, 〈x, p〉)
∧〈i, x〉 /∈ y)}

If b ∈M , then b = hM (i, 〈x, p〉) for some x ∈ N . Hence

〈i, x〉 ∈ b↔ 〈i, x〉 /∈ b.

Contradiction! QED (4)

(5) T = {〈i, x〉 ∈ ω ×N | |=M ϕi[i, 〈x, p〉]}.
Proof: T ⊂ ω×N , since T̃ ⊂ ω× M̃ . But for 〈i, x〉 ∈ ω×N we have:

〈i, x〉 ∈ T ↔ 〈i, π(x)〉 ∈ T̃
↔M |= ϕi[〈(x), p〉]
↔M |= ϕi[〈x, p〉] by (2)

QED (5)

(6) ρ = ρM .
Proof: By (4) we need only prove ρ ≤ ρM . It su�ces to show that if

b ⊂ N is Σ1(M), then 〈JAρ , b〉 is amenable. By (3) b is Σ1(M) in x, p

where x ∈ N .
Hence

b = {z|M |= ϕi[〈z, x〉, p]} =

= {z|〈i, z, x〉 ∈ T}

Hence b is rud in T where N = 〈JAρ , T 〉 is amenable. QED (6)

But then M = hM (ρ ∪ {ρ}) by (3) and the fact that h
JAρ

(ρ) = JAρ .

Hence
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(7) p ∈ RM .
By (6) we then conclude:

(8) N = M
p
.

This proves the existence assertions. We now prove the uniqueness
assertion of (a). Let M̂ p̂ = N where p̂ ∈ RM̂ .

We claim: M̂ = M, p̂ = p.

Since the Skolem function is uniformly Σ1 there is a j < ω such that

hM̂ (i, 〈x, p̂〉) ∈ hM̂ (i, 〈y, p̂)↔

↔ M̂ |= ϕj [〈x, y〉, p]↔ 〈j, 〈x, y〉〉 ∈ T
↔ hM (i, 〈x, p〉) ∈ hM (i, 〈y, p〉)

Similarly:

hM̂ (i, 〈x, p̂〉) ∈ Â↔ hM (i, 〈x, p〉) ∈ A

hM̂ (i, 〈x, p̂〉) ∈ B̂ ↔ hM (i, 〈x, p〉) ∈ B

where M̂ = 〈J Âα̂ , B̂〉, M = 〈JAα , B〉. Then there is an isomorphism σ :

M̂
∼↔ M de�ned by σ(hM̂ (i, 〈x, p̂〉) ' hM (i, 〈x, p〉) for x ∈ N . Clearly

σ(p̂) = p. Hence σ = id, M̂ ,M, p̂ = p, since M, M̂ are transitive.

We now prove (b). Let π̂ ⊃ π such that π̂ : M →Σ0 M and π̂(p) = p.
If x ∈ N and hM (i, 〈x, p〉) is de�ned, it follows that:

π̂(hM (i, 〈x, p)) = hM (i, 〈π(x), p〉) = π̃(hM (i, 〈x, p〉)).

Hence π̂ = π. QED (Lemma 2.5.12)

If we make the further assumption that p ∈ RM we get a stronger result:

Lemma 2.5.13. Let M,N,M, π, π, p, p be as above where p ∈ RM and π :
N →Σl M

p for an l < ω. Then π̃ : M →Σl+1
M .

Proof: For l = 0 it is proven, so let l ≥ 1 and let it hold at l. Let R be
Σl+1(M) if l is even and Πl+1(M) if l is odd. Let R have the same de�nition
over M . It su�ces to show:

R(~x)↔ R(π̃(~x)) for x1, . . . , xn ∈M.

But:

R(~x)↔ Q1y1 ∈M . . .Qlyl ∈MR′(~y, ~x)

and

R(~x)↔ Q1y1 ∈M . . .Qlyl ∈MR
′
(~y, ~x)
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where Q1 . . . Ql is a string of alternating quanti�ers, R′ is Σ1(M), and R
′
is

Σ1(M) by the same de�nition. Set

D =: {〈i, x〉 ∈ ω × JAρ |hM (i, 〈x, p〉) is de�ned}

D =: {〈i, x〉 ∈ ω × JAρ |hM (i, 〈x, p〉) is de�ned}.

Then D is Σ1(M) in p and D is Σ1(M) in p by the same de�nition. Then
D is rud in T pM and D is rud in T p

M
by the same de�nition, since for some

j < ω we have:

x ∈ D ↔ 〈j, x〉 ∈ T pM , x ∈ D ↔ 〈j, x〉 ∈ T
p

M
.

De�ne h on D

k(〈i, x〉) = hM (i, 〈x, p〉); k(〈i, x〉) = hM (i, 〈x, p〉).

Set:
P (~w, ~z)↔ (~w, ~z ∈ D ∧R′(k(~w), k(~z))

P (~w, ~z)↔ (~w, ~z ∈ D ∧R′(k(~w), k(~z))

Then: as before, P is rud in T pM and D is rud in T p
M

by the same de�nition.
Now let xi = k(zi) for i = 1, . . . , n. Then π̃(xi) = k(π(zi)). But since π is
Σl�preserving, we have:

R(~x) ↔ Q1w1 ∈ D . . .Qlwl ∈ DP (~w, ~z)

↔ Q1w1 ∈ D . . .Qlwl ∈ DP (~w, ~z)

↔ R(π̃(~x))

QED (Lemma 2.5.13)

2.5.3 Soundness and iterated projecta

The reduct of an acceptable structure is itself acceptable, so we can take
its reduct etc., yielding a sequence of reducts and nonincreasing projecta
〈ρnM |n < ω〉. this is the classical method of doing �ne structure theory,
which was used to analyse the constructible hierarchy, yielding such results
as the � principles and the covering lemma. In this section we expound
the basic elements of this classical theory. As we shall see, however, it only
works well when our acceptable structures have a property called soundness.
In this book we shall often have to deal with unsound structures, and will,
therefore, take recourse to a further elaboration of �ne structure theory,
which is developed in �2.6.

It is easily seen that:
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Lemma 2.5.14. Let p ∈ RM . Let B be Σ1(M). Then B ∩ JAρ is rud in

parameters over Mp.

Proof: Let B be Σ1 in r, where r = hM (i, 〈v, p〉) and ν < ρ. Then B is Σ1

in ν, p. Let:
B(x)↔M |= ϕi[〈x, ν〉, p]

where 〈ϕi|i < ω〉 is our canonical enumeration of Σ1 formulae. Then:

x ∈ B ↔ 〈i, 〈x, ν〉〉 ∈ TP

QED

It follows easily that:

Corollary 2.5.15. Let p, q ∈ RM . Let D ⊂ JAρ . Then D is Σ1(Mp) i� it is

Σ1(M q).

Assuming that RM 6= ∅, there is then a uniquely de�ned second projectum

de�ned by:

De�nition 2.5.7. ρ2
M ': ρMp for p ∈ RM .

We can then de�ne:

R2
M =: The set of a ∈ [OnM ]<w such that

a ∈ RM and a ∩ ρ ∈ RMa \ ρ.

If R2
M 6= ∅ we can de�ne the second reduct:

M2,a =: (Ma)a∩ρ
2
for a ∈ R2

M .

But then we can de�ne the third projectum:

ρ3 = ρM2,a for a ∈ R2
M .

Carrying this on, we get RnM , M
n,a for a ∈ RnM and ρn+1, as long as RnM 6= ∅.

We shall call M weakly n�sound if RnM 6= ∅.

The formal de�nitions are as follows:

De�nition 2.5.8. Let M = 〈JAα , B〉 be acceptable.

By induction on n we de�ne:

• The set RnM of very good n�parameters.
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• If RnM 6= ∅, we de�ne the n�th projectum ρnM .

• For all a ∈ RnM the n�th reduct Mn,a.

We inductively verify:

* If D ⊂ JAρn and a, b ∈ Rn, then D is Σ1(Mn,a) i� it is Σ1(Mn,b).

Case 1 n = 0. Then R0 =: [OnM ]<ω, ρ0 = OnM ,M
0,a = M .

Case 2 n = m + 1. If Rm = ∅, then Rn = ∅ and ρn is unde�ned. Now let
Rm 6= ∅. Since (*) holds at m, we can de�ne

• ρn =: ρMm,a whenever a ∈ Rm.

• Rn =: the set of a ∈ [α]<ω such that a ∈ Rm and a ∩ ρm ∈ RMm,a .

• Mn,a =: (Mm,a)a∩ρm for a ∈ Rn.

(Note It follows inductively that a \ ρn ∈ Rn whenever a ∈ Rn.)

We now verify (*). It su�ces to prove the direction (→). We �rst note that
Mn,a has the form 〈JAρn, T 〉, where T is the restriction of a Σ1(Mm,a) set T ′

to JAρn. But then T ′ is Σ1(Mm,b) by the induction hypothesis. Hence T is

rudimentary in parameters over Mn,b = (Mm,b)b∩ρ
n
by Lemma 2.5.14.

Hence, if D ⊂ JAρn is Σ1(Mn,a), it is also Σ1(Mn,b). QED

This concludes the de�nition and the veri�cation of (*). Note that R1
M =

RM , ρ1 = ρ1
M , and M1,a = Ma for a ∈ RM .

We say that M is weakly n�sound i� RnM 6= ∅. It is weakly sound i� it is
weakly n�sound for n < ω. A stronger notion is that of full soundness:

De�nition 2.5.9. M is n�sound (or fully n� sound) i� it is weakly n�sound
and for all i < n we have: If a ∈ Ri, then PM i,a = RM i,a .

Thus RM = PM , RM1,a = PM1,a for a ∈ PM etc. If M is n�sound we write
P iM for RiM (i ≤ n), since then: a ∈ P i+1 ↔ (a 6 ∩ρi ∈ P i ∧ a ∩ ρi ∈ Γ

M i,a∩ρi

for i < n).

There is an alternative, but equivalent, de�nition of soundness in terms of
standard parameters. in order to formulate this we �rst de�ne:
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De�nition 2.5.10. Let a, b ∈ [On]<ω.

a <∗ b↔=
∨
µ(a \ µ = b \ µ ∧ µ ∈ b \ a).

Lemma 2.5.16. <∗ is a well ordering of [On]<ω.

Proof: It su�ces to show that ever non empty A ⊂ [On]<ω has a unique
<∗�minimal element. Suppose not. We derive a contradiction by de�ning
an in�nite descending chain of ordinals 〈µi|i < ω〉 with the properties:

• {µ0, . . . , µn} ≤∗ b for all b ∈ A.

• There is b ∈ A such that b \ µn = {µ0, . . . , µn}.

∅ /∈ A, since otherwise ∅ would be the unique minimal element, so set:
µ0 = min{max(b)|b ∈ A}. Given µn we know that {µ0, . . . , µn} /∈ A, since
it would otherwise be the <∗�minimal element. Set:

µn+1 = min{max(b ∩ µn)|b ∈ A ∩ b \ µn = {µ0, . . . , µn}}.

QED (Lemma 2.5.16)

De�nition 2.5.11. The �rst standard parameter pM is de�ned by:

pM =: The <∗�least element of PM .

Lemma 2.5.17. PM = PM i� pM ∈ RM .

Proof: (→) is trivial. We prove (←). Suppose not. Then there is r ∈ P \R.
Hence p <∗ r, where p = pM . Hence in M the statement:

(1) V q <∗ r r = h(i, 〈ν, q〉)
holds for some i < ω, ν < pM . Form M r and let M, r, π be sucht that

M
r

= M r, π ∈ RM , π : M →Σ1 M , and π(r) = r. The statement (1)
then holds of r in M .

Let q ∈ M , r = hM (i, q) where q <∗ r. Set q = π(q). Then r = h(i, q) in
M , where q <∗ r. Hence q ∈ PM . But then q ∈ RM by the minimality of r.
This impossible however, since

q ∈ π′′M = hM (ρM ∪ r) 6= M.

Contradiction! QED (Lemma 2.5.17)
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De�nition 2.5.12. The n�th standard parameter PnM is de�ned by induc-
tion on n as follows:

Case 1 n = 0. p0 = ∅.

Case 2 n = m+ 1. If pm ∈ Rm
pn = pm ∪ PMm,pm

(Note that we always have: pN ∩ ρN = ∅ by <∗�minimality.)

If pm /∈ Rm, then pn is unde�ned. By Lemma 2.5.17 it follows easily that:

Corollary 2.5.18. M is n�sound i� pnM is de�ned and pnM ∈ RnM .

This is the de�nition of soundness usually found in the literature.

Note that the sequences of projecta ρn will stabilize at some n, since it is
monotonly non increasing. If it stabilizes at n, we have Rn+h = Rn and
Pn+h = Pn for h < ω.

By iterated application of Lemma 2.5.13 we get:

Lemma 2.5.19. Let a ∈ RnM and let π : N →Σl M
na. Then there are M,a

and π ⊃ π such that M
na

= Mna, a ∈ Rn
M
, π : M →Σn+l+1

M and π(a) = a.

We also have:

Lemma 2.5.20. Let a ∈ RnM . There is an M�de�nable partial map of ρn

onto M which is M�de�nable in the parameter a.

Proof: By induction on n. The case n = 0 is trivial. Now let n = m + 1.
Let f be a partial map of ρm onto M which is de�nable in a \ ρm. Let
N = Mm,a\ρn , b = a ∩ ρm. Then N = hN (ρn ∪ {b}) = hN

′′(w× (ρn × {b})).
Set:

g(≺ i, ν �) ': hN (i, 〈ν, b〉) for ν < ρn.

Then N = g′′ρn. Hence M = fg′′ρn, where fg is M�de�nable in a. QED

We have now developend the "classical" �ne structure theory which was used
to analyze L. Its applicability to L is given by:

Lemma 2.5.21. Every Jα is acceptable and sound.
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Unfortunately, in this book we shall sometimes have to deal with acceptable
structures which are not sound and can even fail to be weakly 1�sound. This
means that the structure is not coded by any of its reducts. How can we
deal with it? It can be claimed that the totality of reducts contains full
information about the structure, but this totality is a very unwieldy object.
In �2.6 we shall develop methods to "tame the wilderness".

We now turn to the proof of Lemma 2.5.21:

We �rst show:

(A) If Jα is acceptable, then it is sound.

Proof: By induction on n we show that Jα is n�sound. The case n = 0
is trivial. Now let n = m + 1. Let p = pmM . Let q = pMm,p = The
<∗�least q ∈ PMm,p .

Claim q ∈ RMm,p .

Suppose not. Let X = hMm,p(ρn ∪ q). Let π : N
∼←→ X, where N is

transitive. Then π : N →Σ1 M
np and there are M,p, π ⊃ π such that

M
mp

= Mmp, p ∈ Rm
M
, π : M →Σn M , and π(p) = p. Then M = Jα

for some α ≤ α by the condensation lemma for L.

Let A be Σ1(Mmp) in p such that A∩ ρnM /∈Mm,p Then A∩ ρnM /∈M .

Let A be Σ1(N) in q = π−1(q) by the same de�nition. Then A∩ ρn =
A ∩ ρn is Jα de�nable in q. Hence α = α, M = M , since otherwise

A∩ρn ∈M . But then π = id and N = M
mp

= Mm. But by de�nition:
N = hMm,p(ρn ∪ q). Hence q ∈ RMnp . QED

By induction on α we then prove:

(B) Jα is acceptable.

Proof: The case α = ω is trivial. The case α ∈ Lim∗ is also trivial.
There remains the case α = β + ω, where β is a limit ordinal. By the
induction hypothesis Jβ is acceptable, hence sound.

We �rst verify (a) in the de�nition of acceptability. Since Jβ is accept-
able, it su�ces to show that if γ ≤ β and a ∈ Jα \ Jβ , then:

Claim β ≤ γ in Jα.

Suppose not. Since P(Jβ) ∩ Jα = Def(Jβ), we show that that a is Jβ�
de�nable in a parameter r. We may assume w.l.o.g. that r ∈ [β]<ω.
We may also assume that a is Σn(Jβ) in r for su�ciently large n.
There is then, no partial map f ∈ Def(Jβ) mapping γ onto β. Hence,
by Lemma 2.5.20 we have γ < ρn = ρnJβ for all n < ω.
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Pick n big enough that a is Σn(Jβ) is r. Set: p = pn ∪ r (where
pn = pnJβ ). Then p ∈ Rn. Let M = Jβ , N = Mnp. Let X =

hN (γ ∪ q) where q = p ∩ ρn. Let π : N
∼←→ X, where N is transitive.

Then π : N →Σ1 N and hence there are M , p, π ⊃ π such that

M
n,p

= N , p ∈ Rn
M
, π : M →Σn M , π(p) = pn. Hence M = Jβ for

β ≤ β. Moreover, a is Σn(M) in p. Hence β = β, since otherwise
a ∈ Def(Jβ) ⊂ Jβ . But then π = id, N = N = hN (γ ∪ q). Hence

γ ≥ ρN = ρn+1
M .

Contradiction! QED (Claim)

This proves (a). We now prove (b) in the de�nition of "acceptable". Most
of the proof will be a straightforward imitation of the proof of (a). Assume
Jα |= ψ[x, γ], but Jβ 6|= ψ[x, γ], where x ∈ Jγ , γ ≤ β and ψ is Σ1. As before
we claim:

Claim β ≤ γ in Jα.

Suppose not. Then γ < β. Let ψ = V ∪ ϕ where ϕ is Σ0. Let
Jα |= ϕ(y, x, γ). Then y = f(z, x, γ, Jβ) where f is rud and z ∈ Jβ .
But

Jα |= ϕ[f(z, x, γ, Jβ), x, β]

reduces to:

Jα |= ϕ′[z, x, γ, Jβ]

where ϕ′ is Σ0. But then

Jβ ∪ {Jβ} |= ϕ′[z, x, γ, Jβ).

As we have seen in �2.3, this reduces to:

Jβ |= χ[z, x, γ]

where χ is a �rst order formula. Note that this reduction is uniform.
Hence if γ < ν ≤ β, z ∈ Jν and Jν |= χ[z, x, γ], it follows that
Jν+ω |= ψ[x, γ]. This means that Jν |= ¬χ′[x, γ] for γ < ν < β, where
χ = χ(v0, v1, vn) and χ′ = V v0χ. We know that γ < ρnJβ for all n.

Choose n such that χ′ is Σn. Let M = Jβ , N : Mn,p when P = PN .

Let X = hN (γ + 1 ∪ {x}) and let π : N
∼←→ X, where N is transitive.

As before, there are M,p, π ⊃ π such that M
n
p = N , π : M →Σ1 M ,

and π(p) = p. Let M = Jβ . Then Jβ |= χ′(x, γ). Hence β = β and

π = id. Hence N = hN (γ + 1 ∪ {x}). Hence γ ≥ ρn+1 = ρN .

Contradiction! QED (Lemma 2.5.21)
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2.6 Σ∗�theory

There is an alternative to the Levy hierarchy of relations on an acceptable
structureM = 〈JAα , B〉 which � at �rst sight � seems more natural. Σ0, we
recall, consists of the relation on M which are Σ0 de�nable in the predicats
of M . Σ1 then consists of relations of the form

∨
yR(y, ~x) where R is Σ0.

Call these levels Σ
(0)
0 and Σ

(0)
1 . Our next level in the new hierarchy, call it

Σ
(1)
0 , consists of relations which are "Σ0 in Σ

(0)
1 " � i.e. Σ0(〈M, ~A〉) where

A1, . . . , An are Σ
(0)
1 . Σ

(1)
1 then consists of relations of the form

∨
yR(y, ~x)

where R is Σ
(1)
0 . Σ

(2)
0 then consists of relations which are Σ0 in Σ

(1)
1 . . . etc.

By a Σ
(n)
i relation we of course mean a relation of the form

R(~x)↔ R′(~x, ~p),

where p1, . . . , pm ∈ M and R′ is Σ
(n)
i (m). It is clear that there is natural

class of Σ
(n)
i �formulae such that R is a Σ

(n)
i �relation i� it is de�ned by a

Σ
(n)
0 �formula. Thus e.g. we can de�ne the Σ

(1)
0 formula to be the smallest

set Σ of formulae such that

• All primitive formulae are in Σ.

• All Σ
(0)
1 formulae are in Σ.

• Σ is closed under the sentential operations ∨,→,↔,¬.

• If ϕ is in Σ, then so are
∧
v ∈ uϕ,

∨
∈ uϕ (where v 6= u).

By a Σ
(1)
1 formula we then mean a formula of the form

∨
vϕ, where ϕ is Σ

(1)
0 .

How does this hierarchy compare with the Levy hierarchy? If no projectum
drops, it turns out to be a useful re�nement of the Levy hierarchy:

If ρnM = α, then Σ
(n)
0 ⊂ ∆n+1 and Σ

(n)
1 = Σn+1. If, however, a projectum

drops, it trivializes and becomes useless. Suppose e.g. that M = Jα and

ρ = ρ1
M < α. Then every M�de�nable relation becomes Σ

(1)
0 (M). To see

this let R(~x) be de�ned by the formula ϕ(~v), which we may suppose to be
in prenex normal form:

ϕ(~v) = Q1u1 . . . Qmumϕ
′(~v, ~u),

where ϕ′ is quanti�er free (hence Σ0). Then:

R(~x)↔ Q1y1 ∈M . . .Qmym ∈MR′(~x, ~y)
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where R′ is Σ0. By soundness we know that there is a Σ1(M) partial map f
of ρ onto M . But then:

R(~x)↔ Q1ξξ ∈ dom(f) . . . Qmξm ∈ dom(f)R′(~x, f(~ξ)).

Since f is Σ1, the relation R
′(~x, f(~ξ)) is Σ1. But dom(f) is Σ1 and dom(f) ⊂

ρ, hence by induction on m:

R(~x)↔ Q1ξ1 ∈ ρ . . . Qmξm ∈ ρR′′(~x, ~ξ),

where R′′ is a sentential combination of Σ1 relations. Hence R′′ is Σ
(1)
0 (M)

and so is R.

The problem is that, in passing from Σ
(0)
1 to Σ

(1)
0 our variables continued to

range over the whole of M , despite the fact that M had grown "soft" with
respect to Σ1 sets. Thus we were able to reduce unbounded quanti�cation
overM to quanti�cation bounded by ρ, which lies in the "soft" part ofM . in
section 2.5 we acknowledged softness by reducing to the part H = HM

ρ which
remained "hard" wrt Σ1 sets. We then formed a reduct Mp containing just
the sets inH. IfM is sound, we can choose p such thatMp contains complete
information aboutM . In the general case, however, this may not be possible.
It can happen that every reduct entails a loss of information. Thus we want

to hold on to the original structure M . In passing to Σ
(1)
0 , however, we want

to restrict our variables to H. We resolve this conundrum by introducing
new varibles which range only over H. We call these variables of Type 1 ,
the old ones being of Type 0 . Using uh, vh(h = 0, 1) as metavariables for

variables of Type h, we can then reformulate the de�nition of Σ
(1)
0 formula,

replacing the last clause by:

• If ϕ is in Σ, then so are
∧
vi ∈ u1ϕ,

∨
vi ∈ u1ϕ where i = v, 1 and

vi 6= u1.

A Σ
(1)
1 formula is then a formula of the form

∨
v1ϕ, where ϕ is Σ

(1)
0 . We

call A ⊂M a Σ
(1)
1 set if it is de�nable in parameters by a Σ

(1)
1 formula. The

second projectum ρ2 is then the least ρ such that ρ ∩ B /∈ M for some Σ
(1)
1

set B. We then introduce type 2 variables v2, u2, . . . ranging over |JAρ2 | (|J
A
γ |

being the set of elements of the structure JAγ , where e.g. M = 〈JAα , B〉.)
Proceeding in this way, we arrive at a many sorted language with variables

of type n for each n < ω. The resulting hierarchy of Σ
(n)
h formulae (h = 0, 1)

o�ers a much �ner analysis ofM�de�nabilty than was possible with the Levy
hierarchy alone. This analysis is known as Σ∗ theory. In this section we shall
develop Σ∗ theory systematically and ab ovo.
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Before beginning, however, we address a remark to the reader: Most people
react negatively on their �rst encounter with Σ∗ theory. The introduction
of a many sorted language seems awkward and cumbersome. It is especially
annoying that the variable domains diminish as the types increase. The
author confesses to having felt these doubts himself. After developing Σ∗�
theory and making its �rst applictions, we spent a couple of months trying
vainly to redo the proofs without it. The result was messier proofs and a
pronounced loss of perspicuity. It has, in fact, been our consistent experience
that Σ∗ theory facilitates the �ne structural analysis which lies at the heart
of inner model theory. We therefore urge the reader to bear with us.

De�nition 2.6.1. Let M = 〈J ~A
α ,

~B〉 be acceptable.

The Σ∗ M�language L∗ = L∗M has

• a binary predicate ∈̇

• unary predicates Ȧ1, . . . , Ȧn, Ḃ1, . . . , Ḃm

• variables vji (i, j < ω)

De�nition 2.6.2. By induction on n < ω we de�ne sets Σ
(n)
h (h = 0, 1) of

formulae

Σ
(n)
0 = the smallest set of formulae such that

• all primitive formulae are in Σ.

• Σ
(m)
0 ∪ Σ

(m)
1 ⊂ Σ for m < n.

• Σ is closed under sentential operations ∧,∨,→,↔,¬.

• If ϕ is in Σ, j ≤ n, and vj 6= un, then
∧
vj ∈ unϕ,

∨
vj ∈ unϕ are in

Σ.

We then set:

Σ
(n)
1 =: The set of formulae

∨
vnϕ, where ϕ ∈ Σ

(n)
0 .

We also generalize the last part of this de�nition by setting:

De�nition 2.6.3. Let n < ω, 1 ≤ h < ω. Σ
(n)
h is the set of formulae∨

vn1
∧
vn2 . . . Qv

n
hϕ,

where ϕ is Σ
(n)
0 (and Q is

∨
if h is odd and

∧
if h is even).
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We now turn to the interpretation of the formualae in M .

De�nition 2.6.4. Let Fmln be the set of formulae in which only variables
of type ≤ n occur.

By recursion on n we de�ne:

• The n�th projectum ρnρnM .

• The n�th variable domain Hn = Hn
M .

• The satisfaction relation |=n for formulae in Fmln.

|=n is de�ned by interpreting variables of type i as ranging over H i for i ≤ n.
We set: ρ0 = α, H0 = |M | = |J ~A

α |, when M = 〈J ~A
α , ~B〉.

Now let ρn, Hn be given (hence |=n is given). Call a set D ∈ Hn a Σ
(n)
1 set.

if it is de�nable from parameters by a Σ
(n)
1 formula ϕ:

Dx↔M |=n ϕ[x, a1, . . . , ap],

where ϕ = ϕ(vn, ui1 , . . . , uim) is Σ
(n)
1 . ρn+1 is then the least ρ such that

there is a Σ
(n)
1 set D ⊂ ρ with D /∈M . We then set:

Hn+1 = |J ~A
ρ |.

This then de�nes |=n+1.

It is obvious that |=i is contained in |=j for i ≤ j, so we can de�ne the full
Σ∗ satisfaction relation for M by:

|= =
⋃
n<ω

|=n .

Satisfaction is de�ned in the usual way. We employ vi, ui, ωi etc. as metavari-
ables for variables of type i. We also employ xi, yi, zi etc. as metavariables
for elements of H i. We call vi11 , . . . , v

in
n a good sequence for the formula ϕ i�

it is a sequence of distinct variables containing all the variables which occur
free in ϕ. If vi11 , . . . , v

in
n is good we write:

|=M ϕ[vi11 , . . . , v
in
n \ x

i1
1 , . . . , x

in
n ]

to mean that ϕ becomes true if vinh is interpreted by xinh (h = s, . . . , n). We

shall follow normal usage in suppressing the sequence vi11 , . . . , v
in
n writing

only:
|=M ϕ[xi11 , . . . , x

in
n ].
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(However, it is often important for our understanding to retain the upper
indices i1, . . . , in.) We often write ϕ = ϕ(vi11 , . . . , v

in
n )) to indicate that

these are the suppressed variables. ϕ (together with (vi11 , . . . , v
in
n ) de�nes a

relation:
R(xi11 , . . . , x

in
n )↔|=M ϕ[xi11 , . . . , x

in
n ].

Since we are using a many sorted language, however, we must also employ
many sorted relations.

The number of argument places of an ordinary one sorted relation is often
called its "arity". In the case of a many sorted relation, however, we must
know not only the number of argument places, but also the type of each
argument place. We refer to this information as its "arity". Thus the arity
of the above relation is not n but 〈i1, . . . , in〉. An ordinary 1�sorted relation
is usually identi�ed with its �eld. We shall identify a many sorted relation
with the pair consisting of its �eld and its arity:

De�nition 2.6.5. A many sorted relation R on M is a pair 〈|R|, r〉 such
that for some n:

(a) |R| ⊂Mn

(b) r = 〈r1, . . . , rn〉 where ri < ω

(c) R(x1, . . . , xn)→ xi ⊂ Hνi for i = 1, . . . , n.

|R| is called the �eld of R and r is called the arity of R.

In practice we adopt a rough and ready notation, writing R(xi11 , . . . , x
in
n ) to

indicate that R is a many sorted relation of arity 〈i1, . . . , in〉.

(Note Let L = LM be the ordinary �rst order language of M (i.e. it has
only variables of type 0). Since Hn ∈M or Hn = M for all n < ω, it follows
that every L∗�de�nable many sorted relation R(R(xi11 , . . . , x

in
n ) has a �eld

which is L�de�nable in parameters from M .)

(Note If R is a relation of arity 〈i1, . . . , in〉, then its complement is Γ \ R,
where:

Γ = {〈x1, . . . , xn〉|xh ∈ H in for h = 1, . . . , n},

the arity remaining unchanged.)

De�nition 2.6.6. R(xi11 , . . . , x
im
m ) is a Σ

(n)
h (M) relation i� it is de�ned by a

Σ
(n)
h formula. R is Σ

(n)
h (M) in the parameters p1, . . . , pr i� R(~x)↔ R′(~x, ~p),

where R′ is Σ
(n)
h (M). R is a Σ

(n)
k (M) relation i� it is Σ

(n)
h (M) in some

parameters.
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It is easily checked that:

Lemma 2.6.1.

• If R(yn, ~x) is Σ
(n)
1 , so is

∨
ynR(yn, ~x)

• If R(~x), P (~x) are Σ
(n)
1 , then so are R(~x) ∨ P (~x), R(~x) ∧ P (~x).

Moreover, if R(xi00 , . . . , x
im−1

m−1 ) is Σ
(n)
1 , so is any relation R′(yj00 , . . . , y

jr−1

r−1 ) ob-
tained from R by permutation of arguments, insertion of dummy arguments
and fusion of arguments having the same type � i.e.

R′(yj00 , . . . , y
jr−1

r−1 )↔ R(y
jσ(0)
σ(0) , . . . y

jσ(m−1)

σ(m−1))

where σ : m→ r such that jσ(l) = il for l < m.

Using this we get the analogue of Lemma 2.5.6

Lemma 2.6.2. Let M = 〈JAα , B〉 be acceptable. Let ρ = ρn, H = Hn. Then

(a) If ρ ∈M , then ρ is a cardinal in M . (Hence H = HM
ρ )

(b) If D is Σ
(n)
1 (M) and D ⊂ H, then 〈H,D〉 is amenable.

(c) If u ∈ H, there is no Σ
(n)
1 (M) partial map of u onto H.

(d) ρ ∈ Lm∗ if n > 0.

Proof: By induction on n. The induction step is a virtual repetition of the
proof of Lemma 2.5.6.

De�nition 2.6.7. Let R(xi11 , . . . , x
im
m ) be a many sorted relation. By an

n�specialization of R we mean a relation R(xj11 , . . . , x
jm
m ) such that

• jl ≥ il for l = 1, . . . ,m

• jl = il if l < n

• If z1, . . . , zm are such that zl ∈ Hjl for l = 1, . . . ,m, then:
R(~z)↔ R′(~z).

Given a formula ϕ in which all bound quanti�ers are of type ≤ n, we can
easily devise a formula ϕ′ which de�nes a specialization of the relation de�ned
by ϕ:
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Fact Let ϕ = ϕ(vi11 , . . . , v
im
m ) be a formula in which all bound variables are

of type ≤ n. Let uj11 , . . . , u
jm
m be a sequence of district variables such that

jl ≥ il and jl = il if il < n(l = 1, . . . ,m). Suppose that ϕ′ = ϕ′(~u) is
obtained by replacing each free occurence of vill by a free occurence of ujll for
l = 1, . . . ,m. Then for all x1, . . . , xm such that xl ∈ Hjl for l = 1, . . . ,m we
have:

|=M ϕ(~v)[~x]↔|=M ϕ′(~u)[~x].

The proof is by induction on ϕ. We leave it to the reader. Using this, we
get:

Lemma 2.6.3. Let R(xi11 , . . . , x
im
m ) be Σ

(n)
l . Then every n�specialization of

R is Σ
(n)
l .

Proof: R′(xi11 , . . . , x
im
m ) be an n�spezialization. LetR be de�ned by ϕ(vi11 , . . . , v

im
m ).

Suppose (uj11 , . . . , v
jm
m ) is a sequence of distinct variables which are new �

i.e. none of them occur free or bound in ϕ. Let ϕ′ be obtained by replacing
every free occurence of vill by ujll (l = 1, . . . ,m). Then ϕ′(uj11 , . . . , v

jm
m ) de-

�nes R′ by the above fact. QED (Lemma
2.6.3)

Corollary 2.6.4. Let R be Σ
(n)
1 in the parameter p. Then every n�spezialization

of R is Σ
(n)
1 in p.

Lemma 2.6.5. Let R′(xj11 , . . . , x
jm
m ) be Σ

(n)
1 . Then R′ is an n�specialization

of a Σ
(n)
1 relation R(xi11 , . . . , x

im
m ) such that il ≤ n for l = 1, . . . ,m.

Proof: LetR′ be de�ned by ϕ′(uj11 , . . . , v
jm
m ), when ϕ′ is Σ

(n)
1 . Let vin1 , . . . , v

im
m

be a sequence of distinct new variables, where il = min(n, jl) for l =
1, . . . ,m. Replace each free occurence of ujll by vill for l = 1, . . . ,m to get

ϕ(ui11 , . . . , v
im
m ). Let R be de�ned by ϕ. Then R′ is a specialization of R by

the above fact. QED (Lemma 2.6.5)

Corollary 2.6.6. Let R′(xj11 , . . . , x
jm
m ) be Σ

(n)
1 in p. Then R′ is a spe-

cialization of a relation R(xi11 , . . . , x
im
m ) which is Σ

(n)
1 in p with il ≤ n for

l = 1, . . . ,m.

Every Σ
(m)
1 formula can appear as a "primitive" component of a Σ

(m+1)
1

formula. We utilize this fact in proving:

Lemma 2.6.7. Let n = m+1. Let Qj(z
n
j,1, . . . , z

n
j,pj

, xi11 , . . . , x
ip) be Σ

(m)
1 (j =

1, . . . , r).
Set: Qj,~x =: {〈~znj 〉|Qj(~znj , ~x)}.
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Set: H~x =: 〈Hn, Q1,~x, . . . , Qr,~x〉.
Let ϕ = ϕ(v1, . . . , vq) be Σl in the language of H~x. Then

{〈~xn, ~x〉|H~x |= ϕ[~xn]} is Σ
(n)
l .

Proof: We �rst prove it for l = 0, showing by induction on ϕ that the
conclusion holds for any sequence v1, . . . , vl of variables which is good for ϕ.

We describe some typical cases of the induction.

Case 1 ϕ is primitive.
Let e.g. ϕ = Q̇j(vh1 , . . . , vhpi ), where Q̇j is the predicate for Qj~x. Then

H~x |= ϕ[~xn] is equivalent to: Qj(x
n
h1
, . . . , xnhpj

, ~x), which is Σ
(m)
1 (hence

Σ
(n)
0 ). QED (Case 1)

Case 2 ϕ arises from a sentential operation.
Let e.g. ϕ = (ϕ0 ∧ ϕ1). Then H~x |= ϕ[~xn] is equivalent to:

H~x |= ϕ0[~xn] ∧H~x |= ϕ1[~xn]

which, by the induction hypothesis is Σ
(n)
0 . QED (Case 2)

Case 3 ϕ arises from a quanti�cation.
Let e.g. ϕ =

∧
w ∈ viΨ. By bound relettering we can assume w.l.o.g.

that w is not among v1, . . . , vp. We apply the induction hypothesis to
Ψ(w, v1, . . . , vp). Then H~x |= ϕ[~xn] is equivalent to:∧

z ∈ xni H~x |= Ψ[w, ~xn]

which is Σ
(n)
0 by the induction hypothesis. QED (Case 3)

This proves the case l = 0. We then prove it for l > 0 by induction on l,
essentially repeating the proof in case 3. QED (Lemma 2.6.7)

Note It is clear from the proof that the set {〈~xn, ~x〉|H~x |= ϕ[~xn]} is uniformly

Σ
(n)
l � i.e. its de�ning formula χ depends only on ϕ and the de�ning formula

Ψi for Qi(i = 1, . . . , p). In fact, the proof implicitly describes an algorithm
for the function ϕ,Ψ1, . . . ,Ψp 7→ χ.

We can invert the argument of Lemma 2.6.7 to get a weak converse:

Lemma 2.6.8. Let n = m+ 1. Let R(~xn, xi11 , . . . , x
ig
g ) be Σ

(n)
l where il ≤ m

for l = 1, . . . , g. Then there are Σ
(n)
1 relations Qi(~z

n
i , ~x)(i = 1, . . . , p) and a

Σl formula ϕ such that

R(~xn, ~x)↔ H~x |= ϕ[~xn],
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where H~x is de�ned as above.

(Note This is weaker, since we now require il ≤ m.)

Proof: We �rst prove it for l = 0. By induction on χ we prove:

Claim Let χ be Σ
(n)
0 . Let ~vn, vi11 , . . . , v

iq
q be good for χ, where i1, . . . , iq ≤ m.

Let χ(~vn, ~v) de�ne the relationR(~xn, ~x). Then the conclusion of Lemma 2.6.8
holds for this R (with l = 0).

Case 1 χ is Σ
(m)
1 .

Let χ(~xn, ~x) de�ne Q(~xn, ~x). Then R(~xn, ~x)↔ H~x |= Q̇~vn[~xn].
QED (Case 1)

Case 2 χ arises from a sentential operation.
Let e.g. χ = (Ψ ∧ Ψ′). Appliyng the induction hypothesis we get
Qi(~x

n
i , ~x)(i = 1, . . . , p) and ϕ such that

M |= Ψ[~xn, ~x]↔ H~x |= ϕ[~xn]

whereH~x = 〈Hn, Q1~x, . . . , Qp~x〉. Similarly we getQ′i(~y
n
i , ~x)(i = 1, . . . , q′)

and ϕ′

M |= Ψ′[~xn, ~x]↔ H ′~x |= ϕ′[~xn].

Let Q̇i be the predicate for Qi~x in the language of H~x. Let Q̇
′
i be the

predicate for Q′i~x in the language of H ′~x. Assume w.l.o.q. that Q̇i 6= Q̇′j
for all i, j. Putting the two languages together we get a language for

H∗~x = 〈Hn, ~Q~x, ~Q
′
~x〉.

Clearly:
M |= (χ ∧ χ′)[~xn, ~x]↔ H∗~x |= (ϕ ∧ ϕ′)[~xn].

QED (Case 2)

Case 3 χ arises from the application of a bounded quanti�er.
Let e.g. χ =

∧
wn ∈ vnj χ′. By bound relettering we can assume w.l.o.g.

that wn is not among ~vn. Then wn~vn, ~v is a good sequence for χ′ and
by the induction hypothesis we have for χ′ = χ′(wn, ~vn, ~v):

M |= χ′[zn, ~xn, x]↔ H~x |= ϕ[zn, ~xn, ~x].

But then:

M |= χ[~xn, ~x] ↔
∧
zn ∈ xnjM |= χ′[zn, ~xn, ~x]

↔
∧
zn ∈ xnjH~x |= ϕ[zn, ~xn]

↔ H~x |=
∧
w ∈ vjϕ[~xn].

QED (Lemma 2.6.8)
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Note Our proof again establishes uniformity. In fact, if χ is the Σ
(n)
l �

de�nition of R, the proof implicitely describes an algorithm for the function

χ 7→ ϕ,Ψ1, . . . ,Ψp

where Ψi is a Σ
(m)
1 de�nition of Qi.

Remark Lemma 2.6.7 and 2.6.8 taken together give an inductive de�nition

of "Σ
(n)
l relation" which avoids the many sorted language. It would, however,

be di�cult to work directly from this de�nition.

By a function of arity 〈i1, . . . , in〉 to Hj we mean a relation F (yj , xi1 , . . . , xin)
such that for all xi1 , . . . , xin there is at most one such yj . If this y exists, we

denote it by F (xi1 , . . . , xin). Of particular interest are the Σ
(i)
1 functions to

H i.

Lemma 2.6.9. R(yn, ~x) be a Σ
(n)
1 relation. Then R has a Σ

(n)
1 uniformizing

function F (~x).

Proof: We can assume w.l.o.g that the arguments of R are all of type ≤ n.
(Otherwise let R be a specialization of R′, where the arguments of R′ are of
type ≤ n. Let F ′ uniformize R′. Then the appropriate specialization F of
F ′ uniformizes R.)

Case 1 n = 0.
Set:

F (~x) ': y where 〈z, y〉 is <M �least such that R′(z, y, ~x).

By section 2.3 we know that uM (x) is Σ1, where uM (x) = {y|y <M x}.
Thus for su�cient r we have:

y = F (~x)↔
∨
z(R′(z, y, ~x)∧

∧w ∈ uM (〈z, y〉)
∧
z′, y′ ∈ Cr(w)

(w = 〈z′, y′〉 → ¬R(z′, y′, ~x)),

which is uniformly Σ1(M).

Case 2 n > 0. Let n = m+ 1.
Rearranging the arguments of R if necessary, we can assume that R
has the form R(yn, ~xn, ~x), where the ~x are of type ≤ m. Then there

are Qi(~z
n
i , ~x

n, ~x)(i = 1, . . . , p) such that Qi is Σ
(m)
1 and

R(yn, ~xn, ~x)↔ H~x |= ϕ[yn, ~xn],
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where ϕ is Σ1 and

H~x = 〈Hn, Q1~x, . . . , Qn~x〉.

If e.g. M = 〈JA, B〉, we can assume w.l.o.g. that Q1(zn, ~x) ↔ A(zn).
Then <H~x, uH~x are uniformly Σ1(H~x) and by the argument of Case 1
there is a Σ1 formula ϕ′ such that F uniformies R where

y = F (~xn, ~x)↔ H~x |= ϕ′[~xn, ~x].

QED (2.6.9)

Note The proof shows that F (~x) is uniformly Σ
(n)
1 � i.e. its Σ

(n)
1 de�nition

depends only on the Σ
(n)
1 de�nition of R(yn, ~x), regardless of M .

Note It is clear from the proof that the Σ
(n)
1 de�nition of F is functionally

absolute � i.e. it de�nes a function over every acceptable M of the same
type. Thus:

Corollary 2.6.10. Every Σ
(n)
1 function F (~x) to Hn has a functionally ab-

solute Σ
(n)
1 de�nition.

Note The Σ
(n)
1 functions are closed under permutation of arguments, inser-

tion of dummy arguments, and fusion of arguments of same type. Thus if

F (xi11 , . . . x
in
n ) is Σ

(n)
1 , so is F ′(yj11 , . . . , y

jm
m ) where

F ′(yj11 , . . . , y
jm
m ) ' F (y

jσ(1)
σ(1) , . . . , y

jσ(n)
σ(n) )

and σ : n→ m such that jσ(l) = il for l < n.

If R(xj11 , . . . , x
jp
p ) is a relation and Fi(~z) is a function to Hji for i = 1, . . . , n,

we sometimes use the abbreviation:

R(~F (~z))↔:
∨
xj11 , . . . x

jp
p (

p∧
i=1

xjii = Fi(~z) ∧R(~x)).

Note that R(~F (~z)) is then false if some Fi(~z) does not exist. Σ
(n)
1 relations

are not, in general, closed under substitution of Σ
(n)
1 functions, but we do

get:

Lemma 2.6.11. Let R(xj11 , . . . , x
jp
p ) be Σ

(n)
1 such that ji ≤ n for i = 1, . . . , p.

Let Fi(~z) be a Σ
(ji)
1 map to Hji for i = 1, . . . , p. Then R(~F (~z)) is Σ

(n)
1

(uniformly in the Σ
(n)
1 de�nitions of R,F1, . . . , F8)
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Before proving Lemma 2.6.11 we show that it has the following corollary:

Corollary 2.6.12. Let R(~x, yj11 , . . . , y
jp
p ) be Σ

(n)
1 where ji ≤ n for i =

1, . . . , p. Let Fi(~z) be a Σ
(ji)
1 map to Hji for i = 1, . . . , p. Then R(~x, ~F (~z))

is (uniformly) Σ
(n)
1 .

Proof: We can assume w.l.o.g. that each of ~x has type ≤ n, since otherwise
R is a specialization of an R′ with this property. But then R(~x, ~F (z)) is

a specialization of R′(~x, ~F (z)). Let ~x = xh11 , . . . , x
hq
q with hi ≤ n for i =

1, . . . , q. For i = 1, . . . , p set:

F ′(~x, ~z) ' F (~z).

For i = 1, . . . , q set:
Gh(~x, ~z) ' xhii .

By Lemma 2.6.11, R(~G(~x, ~z), F ′(~x, ~z)) is Σ
(n)
1 . But

R(~G(~x, ~z), F ′(~x, ~z))↔ R(~x, ~F (~z)).

QED (Corollary 2.6.12)

We now prove Lemma 2.6.11 by induction on n.

Case 1 n = 0.
The conclusion is immediate by the de�nition of R(~F (~z)):

R(~F (~z))↔
∨
x0

1 . . . x
0
p(

p∧
i=1

x0
1 = Fi(~z) ∧R(~x)).

Case 2 n = m+ 1.
Then Lemma 2.6.11 holds at m and it is clear from the above proof
that Corollary 2.6.12 does, too.

Rearranging the arguments of R if necessary, we can bring R into the form:

R(~xn, xl11 , . . . , x
lq
q ) where li ≤ m for i = 1, . . . , q.

We �rst show:

Claim R(~xn, ~F (~z)) is Σ
(n)
1 .

Proof: Let Qi(~z
n
i , ~x) be Σ

(m)
1 (i = 1, . . . , r) such that

R(xn, ~x)↔ H~x |= ϕ[~xn]
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where ϕ is Σ1 and:

H~x = 〈Hn, Q1,~x, . . . , Qr,~x〉.

Set:
Qi(~z

n
i , ~z) ↔: Qi(z

n
i , F (~z))

↔
∨
~x(
∧q
i=1 x

li
i = Fi(~z) ∧R(~x))

H~z =: 〈Hn, Q1,~z, . . . , Qr,~z〉.

If xlii = Fi(~z) for i = 1, . . . , q, then Qi(~z
n
i , ~z) ↔ Qi(~z

n, ~x) and H~z =
H~x. Hence:

H~z |= ϕ[~xn] ↔ H~x |= ϕ[~xn]

↔ R(~xn, ~x)

↔ R(~xn, ~F (~z)).

If, on the other hand, Fi(~z) does not exist for some i, then R(~xn, ~F (~z))
is false. Hence:

R(~xn, ~F (~z)) ↔ (
∧q
i=1

∨
xlii (xlii = Fi(~z))

∧H~z |= ϕ[~xn]).

But
q∧
i=1

∨
xlii (xlii = Fi(~z)) is Σ

(n)
0 , so the result follows by applying

Lemma 2.6.7 to ϕ. QED (Claim)

But then, setting: R′(~xn, ~z)↔ R(~xn, F (~z)), we have:

R(~F (~x))↔ ∨~xn(

q∧
i=1

xni = Fi(~z) ∧R′(~xn, ~z)).

QED (Lemma 2.6.11)

Note that if, in the last claim, we took R(~xn, xl11 , . . . , x
lq
q ) as being Σ

(n)
0

instead of Σ
(n)
1 , then in the proof of the claim we could take ϕ as being Σ0

instead of Σ1. But then the application of Lemma 2.6.7 to H~z |= ϕ[~xn] yields

a Σ
(n)
0 formula. Then we have, in e�ect, also proven:

Corollary 2.6.13. Let R~xn, yl11 , . . . , y
lq
q ) be Σ

(n)
0 where l1, . . . , lr < n. Let

Fi(~z) be a Σ
(li)
1 map to H li for i = 1, . . . , r. Then R(xn, ~F (~z)) is (uniformly)

Σ
(n)
0 .

As corollaries of Lemma 2.6.11 we then get:
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Corollary 2.6.14. Let G(xj11 , . . . , x
jp
p ) be a Σ

(n)
1 map to Hn, where j1, . . . , jp ≤

n. Let Fi(~z) be a Σ
(n)
1 map to Hji for i = 1, . . . , p. Then H(~z) ' G(~F (~z))

is uniformly Σ
(n)
1 .

Proof:

y = H(~z)↔
∨
~x(

p∧
i=1

xjii = Fi(~z) ∧ y = G(~x)).

QED (Corollary 2.6.14)

Corollary 2.6.15. Let R(xj11 , . . . , x
jp
p ) be Σ

(n)
1 where ji ≤ n for i = 1, . . . , p.

There is a Σ
(n)
1 relation R′(z0

1 , . . . , z
0
p) with the same �eld

Proof: Set:

R′(~z)↔:
∨
~x(

p∧
i=1

xjii = z0
i ∧R(~x)).

QED (Corollary 2.6.15)

Thus in theory we can always get by with relations that have only arguments
of type 0. (Let one make too much of this, however, we remark that the
de�ning formula of R′ will still have bounded many sorted variables.)

Generalizing this, we see that if R is a relation with arguments of type ≤ n,
then the property of being Σ

(n)
1 depends only on the �eld of R. Let us de�ne:

De�nition 2.6.8. R′(zj11 , . . . , z
jr
r ) is a reindexing of the relationR(xi11 , . . . , x

ir
r )

i� both relations have the same �eld i.e.

R′(~y)↔ R(~y) for y1, . . . , yr ∈M.

Then:

Corollary 2.6.16. Let R(xi11 , . . . , x
ir
r ) be Σ

(n)
1 where i1, . . . , ir ≤ n. Let

R′(zj11 , . . . , z
jr
r ) be a reindexing of R, where j1, . . . , jr ≤ n. Then R′ is Σ

(n)
1 .

Proof:
R′~z) ↔ R(F1(z1), . . . , Fr(zr))

↔ ∨~x(
∨r
l=1 x

il
l = zjll ∧R(~x))

where

xil = Fl(z
jl)↔: xil = zjl .

QED (Corollary 2.6.16)
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We now consider the relationship between Σ∗ theory and the theory devel-

oped in �2.5. Σ
(0)
1 is of course the same as Σ1 and ρ1 is the same as the Σ1

projectum ρ which we de�ned in �2.5.2. In �2.5.2 we also de�ned the set P
of good parameters and the set R of very good parameters. We then de�ne
the reduct M of M for any ∈ [OnM ]<ω. We now generalize these notions

to Σ
(n)
1 . We have already de�ned the Σ

(n)
1 projectum ρn. In analogy with

the above we now de�ne the sets Pn, Rn of Σ
(n)
1 �good parameters. We also

de�ne the Σ
(n)
1 reduct Mnp of M by p ∈ [OnM ]<ω].

Under the special assumption of soundness, there will turn out to be the
same as the concepts de�ned in �2.5.3.

De�nition 2.6.9. LetM = 〈JAα , B〉 be acceptable. We de�ne setsMn
xn−1,...,x0

and predicates Tn(xn, . . . , x0) as follows:

M0 =: M,T 0 =: B (i.e. Mn
~x = M for n = 0)

Mn+1
~x =:〈JAρn+1 , T

n+1
~x 〉 for ~x = xn, . . . , x0

Tn+1(xn+1, ~x)↔
∨
zn+1

∨
i < ω(xn+1 = 〈i, zn+1〉

∧Mn
xn+1,...,x0 |= ϕi[z

n+1, xn])

(where 〈ϕi|i < ω〉 is our �xed canonical enumeration of Σ1 formulae.)

(Then Tn+1(〈i, xn+1〉, xn, . . . , x0)↔Mn
xn−1,...,x0 |= ϕi[x

n+1, xn]).

Clearly Tn+1 is uniformly Σ
(n)
1 (M).

Lemma 2.6.17.

(a) Tn+1 is Σ
(n)
1

(b) Let ϕ be Σj. Then {〈~xn+1, ~x〉|Mn+1
~x |= ϕ[~xn+1]} is Σ

(n+1)
j .

Proof: We �rst note thatMn+1
~x can be written asH~x = 〈Hn+1, An+1

~x , Tn+1
~x 〉,

where An+1(xn+1, ~x)↔: A(xn+1). Hence by Lemma 2.6.7:

(1) If (a) holds at n, so does (b). But (a) then follows by induction on n:

Case 1 n = 0 is trivial since 
Σ1
N is Σ1(N) for all rud closed N .

Case 2 n = m+ 1. Then T (n+1) is Σ
(n)
1 by (1) applied to m.

QED (Lemma 2.6.17)

We now prove a converse to Lemma 2.6.17.
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Lemma 2.6.18. (a) Let R(xn+1, . . . , x0) be Σ
(n)
1 . Then there is i < ω

such that

R(xn+1, ~x)↔ Tn+1(〈i, xn+1〉, ~x).

(b) Let R(~xn+1, . . . , x0) be Σ
(n+1)
1 . Then there is a Σ1 formula ϕ such that

R(~xn+1, ~x)↔Mn+1
~x |= ϕ[~xn+1].

Proof:

(1) Let (a) hold at n. Then so does (b).

Proof: We know that

R(~xn+1, ~x)↔
∨
zn+1P (zn+1, xn+1, ~x)

for a Σ
(n+1)
0 formula P . Hence it su�ces to show:

Claim Let P (~xn+1, ~x) be Σ
(n+1)
0 . Then there is a Σ1 formula ϕ such that

P (~xn+1, ~x)↔Mn+1
~x |= ϕ[~xn+1].

Proof: We know that there are Qi(~z
n+1
i , ~x)(i = 1, . . . , p) such that Qi is

Σ
(n)
1 and

(2) P (~xn+1, ~x)↔ Hn+1
~x |= Ψ[~xn+1] where Ψ is Σ0 and

Hn
~x = 〈Hn+1, ~Q~x〉.

Applying (a) to the relation:∨
un+1(un+1 = 〈~zn+1

i 〉 ∧Qi(~zn+1
i , ~x))

we see that for each i there is ji < ω such that

Qi(~z
n+1
i , ~x)↔ 〈ji, 〈~zn+1〉〉 ∈ Tn+1

vecx .

Thus Qi, ~x is uniformly rud in Tn+1
~x for i = 1, . . . , p. P~x is the restric-

tion of a relation rud in Qi,~x(i = 1, . . . , p) to Hn+1, by (2). By �2
Corollary 2.2.8 it follows that P~x is the restriction of a relation rud in
Tn+1
~x to Hn+1 uniformly. Since Mn+1

~x = 〈JAρn+1, T
n+1
~x 〉 is rud closed,

it follows by �2 Corollary 2.2.8 that:

P (~xn+1, ~x)↔Mn+1
~x |= ϕ[~xn+1]

for a Σ1 formula ϕ. QED (1)
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Given (1) we can now prove (a) by induction on n.

Case 1 n = 0.
Since Σ1 = Σ

(0)
1 , there is ϕi such that

R(x1, x0) ↔M |= ϕi[x
1, x0]

↔ T 1(〈i, x1〉, x0).

Case 2 n = m+ 1.
Let R(xn+1, . . . , x0) be Σ

(n)
1 . By the induction hypothesis and (1) we

know that (b) holds at n. Hence:

R(xn+1, xm+1, xm, . . . , x0)↔
↔Mn

xm,...,x0 |= ϕi[x
n+1, xm+1]

for some i. But then

R(xn+1, . . . , x0)↔ Tn+1(〈i, xn+1〉, xm+1, . . . , x0).

QED (Lemma 2.6.18)

Note The reductions in (a) and (b) are both uniform. We have in fact im-

plicitly de�ned algorithms which in case (a) takes us from the Σ
(n)
1 de�nition

of R to the integer i, and in case (b) takes us from the Σ
(n+1)
1 de�nition of

R to the Σ1 formula ϕ.

We now generalize the de�nition of reduct given in �2.5.2 as follows:

De�nition 2.6.10. Let a ∈ [OnM ]<ω. M0,a =: M ; Mn+1,a = Mn+1
a(0),...,a(n)

where a(i) = a ∩ ρiM .

Thus Mn+1,a = 〈JAρn+1 , T
n+1,a〉 where Tn+1,a

a(0),...,a(n)
.

Thus by Lemma 2.6.18

Corollary 2.6.19. Set a(i) = a ∩ ρi for a ∈ [OnM ]<ω.

(a) If D ⊂ Hn+1 is Σ
(n)
1 in a(0), . . . , a(n), there is (uniformly) an i < ω

such that
D(xn+1)↔ 〈i, xn+1〉 ∈ Tn+1,a

(b) If D(~xn+1) is Σ
(n+1)
1 in a(0), . . . , a(n) there is (uniformly) a Σ1 formula

ϕ such that D(~xn+1)↔Mn+1,a |= ϕ~xn+1.
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(Note Being Σ
(n)
1 in a is the same as being Σ

(n)
1 in a(0), . . . , a(n), but I do not

see how this is uniformly so. To see that a Σ
(n)
1 relation R in a(0), . . . , a(n) is

Σ
(n)
1 in a we note that for each n there is k such that y = a ∩ ρn ↔

∨
f (f

is the monotone enumeration of a and y = f ′′k), which is Σ1 in a. However,

k cannot be inferred from the Σ
(n)
1 de�nition of R, so the reduction is not

uniform.)

We can generalize the good parameter sets P,R of �2.5.2 as follows:

De�nition 2.6.11. P 0
M =: [On]<ω.

Pn+1
M =: the set of a ∈ PnM such that there is D which is Σ

(n)
1 (M) in a with

D ∩Hn
M /∈M .

(Thus we obviously have P 1 = P .)

Similarly:

De�nition 2.6.12. R0
M =: P 0

M .

Rn+1
M =: The set of a ∈ RnM such that

Mn,a = hMn,a(ρn+1 ∪ (a ∩ ρn)).

Comparing these de�nitions with those in �2.5.6 it is apparent that RnM
has the same meaning and that, whenever a ∈ RnM , then Mn,a is the same
structure.

By a virtual repetition of the proof of Lemma 2.5.8 we get:

Lemma 2.6.20. a ∈ Pn ↔ Tna /∈M .

We also note the following fact:

Lemma 2.6.21. Let a ∈ Rn. Let D be Σ
(n)
1 . Then D is Σ

(n)
1 in parameters

from ρn+1 ∪ {a(0), . . . , a(n)}, where a(i) =: a ∩ ρi. (Hence D is Σ
(n)
1 (M) in

parameters from ρn+1 ∪ {a}.)

Proof: We use induction on n. Let it hold below n. Then:

D(~x)↔ D′(~x; a(0), . . . , a(n−1), ~ξ),

where ξ1, . . . , ξr < ρn. (If n = 0 the sequence a(0), . . . , a(n−1) is vacuous and
ρn = OnM .)
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Let ξi = hMn+1(ji, 〈µi, a(n)〉), where µ1, . . . , µr < ρn+1. The functions:

Fi(x) ' hMna(ji, 〈x, a(n)〉)

are Σ
(n)
1 to Hn in the parameters a(0), . . . , a(n). But D(~x) then has the form:

D′(~x, a(0), . . . , a(n−1), F1(µ1), . . . , Fr(µr)),

which is Σ
(n)
1 in a(0), . . . , a(n), µ1, . . . , µk by Corollary 2.6.12.

QED (Lemma 2.6.21)

De�nition 2.6.13. π is a Σ
(n)
h preserving map of M to M (in symbols

π : M →
Σ

(n)
h

M) i� the following hold:

• M,M are acceptable structures of the same type.

• π′′H i
M
⊂ H i

M for i ≤ n.

• Let ϕ = ϕ(vj11 , . . . , v
jm
m ) be a Σ

(n)
h formula with a good sequence ~v of

variables such that j1, . . . , jm ≤ n. Let xi ∈ Hji
M

for i = 1, . . . ,m.
Then:

M |= ϕ[~x]↔M |= ϕ[π(~x)].

π is then a structure preserving injection. If it is Σ
(n)
h �preserving, it is

Σ
(m)
1 �preserving for m < n and Σ

(n)
i �preserving for i < h. If h ≥ 1 then

π−1′′Hn
M ⊂ Hn

M
, as can be seen using:

x ∈ Hn
M ↔M |= V unun = v0[x].

We say that π is strictly Σ
(n)
h preserving (in symbols π : M →

Σ
(n)
h

M strictly)

i� it is Σ
(n)
h preserving and π−1′′Hn ⊂ Hn

. (Only if h = 0 can the embedding
fail to be strict.)

We say that π is Σ∗ preserving (π : M →Σ∗ M) i� it is Σ
(n)
1 preserving for

all n < ω. We call π Σ
(n)
ω preserving i� it is Σ

(n)
h preserving for all h < ω.

Good functions

Let n < ω. Consider the class F of all Σ
(n)
1 functions F (xi1 , . . . , xim) to Hj ,

where j, i1, . . . , im ≤ n. This class is not necessarily closed under compo-

sition. If, however, G0 is the class of Σ
(j)
1 functions G(zi1 , . . . , zim) to Hj

where j, i1, . . . , im ≤ n, then G0 ⊂ F and, as we have seen, elements of G0
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can be composed into elements of F � i.e. if F (zi1 , . . . , zim) is in F and
Gl(~x) is in G0 for l = 1, . . . , n, then F (~G(~x)) lies in F. The class G of good

Σ
(n)
1 functions is the result of closing G0 under composition. The elements

of G are all Σ
(n)
1 functions and G is closed under composition. The precise

de�nition is:

De�nition 2.6.14. Fix acceptable M . We de�ne sets Gk = Gk
n of Σ

(n)
1

functions by:

G0 = The set of partial Σ
(i)
1 maps F (xj11 , . . . , x

jm
m ) to H i, where i ≤ n and

j1, . . . , jm ≤ n.

Gk+1 = The set of H(~x) ' G(~F (~x)), such that G(yj1 , . . . , yjmm ) is in Gk and
Fl ∈ G0 is a map to jl for l = 1, . . . ,m.

It follows easily thatGk ⊂ Gk
k+1 (sinceG(~y) ' G(~h(~y)) where h(yj11 , . . . , y

jm
m ) =

yjii for i = 1, . . . ,m). G = Gn =:
⋃
k

Gk is then the set of all good Σ
(n)
1

functions G∗ =
⋃
n
Gn is the set of all good Σ∗ functions. All good Σ

(n)
1 func-

tions have a functionally absolute Σ
(n)
1 de�nition. Moreover, the good Σ

(n)
1

functions are closed under permutation of arguments, insertion of dummy
arguments, and fusion of arguments of same type (i.e. if F (xi10 , . . . , x

jp
m−1)

is good, then so is F ′(~y) ' F (y
jσ(1)
σ(1) , . . . , y

jσ(m)

σ(m) ) and σ : m → p such that
jσ(l) = il for l < m.

To see this, one proves by a simple induction on k that:

Lemma 2.6.22. Each Gk
n has the above properties.

The proof is quite straightforward. We then get:

Lemma 2.6.23. The good Σ
(n)
1 functions are closed under composition: Let

G(yj11 , . . . , y
jm
m ) be good and let Fl(~x) be a good function to Hjl for l = . . . ,m.

Then the function G(~F (~x)) is good.

Proof: By induction in k < ω we prove:

Claim The above holds for Fl ∈ Gk(l = 1, . . . ,m).

Case 1 k = 0.
This is trivial by the de�nition of "good function".
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Case 2 k = h+ 1.
Let:

Fl(~x) ' Hl(Fl,1(~x), . . . , Fl,pl(~x))

for l = 1, . . . ,m, where Hl(zl,1, . . . , zl,pl) is in Gh and Fl,i ∈ G0 is a
map to Hjl,i for l = 1, . . . ,m, i = 1, . . . , pl.

Let 〈〈lξ, iξ〉|ξ = 1, . . . , p〉 enumerate

{〈l, i〉|l = 1, . . . ,m; i = 1, . . . , pl}.

De�ne σl : {1, . . . , pl} → {1, . . . , p} by:

σl(i) = that ξ such that 〈l, i〉 = 〈lξ, iξ〉.

Set:

H ′l(z1, . . . , zp) ' Hl(zσl(1), . . . , zσl(pl))

for l = 1, . . . ,m. F ′ξ = Flξ,iξ for ξ = 1, . . . , p.

Clearly we have:

Fl(~x) = H ′l(F
′
1(~x), . . . , F ′p(~x))

where H ′l ∈ Gh for l = 1, . . . ,m. Set:

G′(z1, . . . , zp| ' G(H1(~z), . . . ,Hm(~z)).

Then G′ is a good Σ
(n)
1 function by the induction hypothesis. But:

G(~F (~x)) ' G′(F ′1(~x), . . . , F ′p(~x)).

The conclusion then follows by Case 1, since F ′i ∈ G0 for i = 1, . . . , p.
QED (Lemma 2.6.23)

An entirely similar proof yields:

Lemma 2.6.24. Let R(xi11 , . . . , x
ir
r ) be Σ

(n)
1 where i1, . . . , ir ≤ n. Let Fl(~z)

be a good Σ
(n)
1 map to H il(L = 1, . . . ,m). Then R(~F (~z)) is Σ

(n)
1 .

(Recall that R(~F , ~z)) means:

∨
y1, . . . , yr(

r∧
l=1

yl = F (~z) ∧R(~y)).)

Applying Corollary 2.6.13 we also get:
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Lemma 2.6.25. Let n = m + 1. Let R(~xn, xi11 , . . . , x
ir
r ) be Σ

(n)
0 where

i1, . . . , ir ≤ m. Let Fl(~z) be a good Σ
(n)
1 map to H il for l = 1, . . . , r. Then

R(~xn, F (~z)) in Σ
(n)
0 .

By a reindexing of a function G(xi11 , . . . , x
ir
r ) we mean any function G′ which

is a reindexing of G as a relation. (In other words G,G′ have the same �eld,
i.e.

G(~x) ' G′(~x) for all x1, . . . , xr ∈M.)

Then:

Corollary 2.6.26. Let G(xi11 , . . . , x
ir
r ) be a good Σ

(m)
1 map to H i. Let

G′(yj11 , . . . , y
jr
r ) be a map to Hj, where j, j1, . . . , jr ≤ n. If G′ is a rein-

dexing of G, then G′ is a good Σ
(m)
1 function.

Proof: G′(y) ' F (G(F1(yj11 ), . . . , F (yjrr ))) where F is de�ned by xi = yi

and Fl is de�ned by xill = yjll . (Then e.g.

F (y) =

{
y if y ∈ Hmin{i,j}

M ,

unde�ned if not.

where F is a map to i with arity j.)

But F, F1 . . . , Fr are Σ
(n)
1 good. QED (Corollary 2.6.26)

The statement made earlier that every good Σ
(n)
1 function has a functionally

absolute Σ
(n)
1 de�nition can be improved. We de�ne:

De�nition 2.6.15. ϕ is a good Σ
(n)
1 de�nition i� ϕ is a Σ

(n)
1 formula which

de�nes a good Σ
(n)
1 function over any acceptable M of the given type.

Lemma 2.6.27. Every good Σ
(n)
1 function has a good Σ

(n)
1 de�nition.

Proof: By induction on k we show that it is true for all elements of Gk.

If F ∈ G0, then F is a Σ
(i)
1 map to H i for an i ≤ n. Hence any func-

tionally absolute Σ
(i)
1 de�nition will do. Now let F ∈ Gk+1. Then F (~x) '

G(H1(~x), . . . ,Hp(~x)) where G ∈ Gk and Hi ∈ G0 for i = 1, . . . , p. Then
G has a good de�nition ϕ and every Hi has a good de�nition Ψi. By the

uniformity expressed in Corollary 2.6.14 there is a Σ
(n)
1 formula χ such that,

given any acceptable M of the given type, if ϕ de�nes G′ and Ψi de�nes

H ′i(i = 1, . . . , p), then χ de�nes F ′(~x) ' G′( ~H ′(~x)). Thus χ is a good Σ
(n)
1

de�nition of F . QED (Lemma 2.6.27)
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De�nition 2.6.16. Let a ∈ [Onm]<ω. We de�ne partial maps ha from
ω ×Hn to Hn by:

hna(i, x) ': hMn,a(i, 〈x, a(n)〉).

Then hna is uniformly Σ
(n)
1 in a(n), . . . , a(0) by Corollary ??. We then de�ne

maps h̃na from ω ×Hn to H0 by:

h̃0
a(i, x) ' hoa(i, x)

h̃n+1
a (i, x) ' h̃na((i)0, h

n+1
a ((i)1, x)).

Then h̃na is a good Σ
(n)
1 function uniformly in a(n), . . . , a(0).

Clearly, if a ∈ Rn+1, then

hna
′′(ω × ρn+1) = Hn.

Hence:

Lemma 2.6.28. If a ∈ Rn+1, then h̃na
′′(ω × ρn+1) = M .

Corollary 2.6.29. If Rn 6= ∅, then Σl ⊂ Σ
(n)
l for l ≥ 1.

Proof: Trivial for n = 0, since Σ
(0)
l = Σl. Now let n = m + 1. Set:

D = Hn ∩ dom(hna), where a ∈ Rn. Then D is Σ
(n)
1 by Lemma 2.6.24, since:

xn ∈ D ↔ hna(xn) = hna(xn)

↔
∨
z0(z0 = hna(xn) ∧ z0 = z0).

Let R(~x) be Σl(M). Let

R(~x)↔ Q1z1 . . . QzlP (~z, ~x)

where P is Σ0. Set:
P ′(~un, ~x)↔: P (~hn(~un), ~x).

Then P ′ is Σ
(n)
1 in a. But for un1 , . . . , u

n
l ∈ D, ¬P ′(~un, ~x) can also be written

as a Σ
(n)
1 formula. Hence

R(~x)↔ Qun1 ∈ D . . .Qunl ∈ DP ′(~un, ~x)

is Σ
(n)
l in a. QED (Corollary 2.6.29)

We have seen that every Σ
(n)
ω relation is Σω. Hence:

Corollary 2.6.30. Let Rn 6= ∅. Then Σ
(n)
ω = Σω.
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An obvious corollary of Lemma 2.6.28 is:

Corollary 2.6.31. Let a ∈ RnM . Then every element of M has the form

F (ξ, a(0), . . . , a(n)) where F is a good Σ
(n)
1 function and ξ < ρn+1.

Using this we now prove a downward extension of embeddings lemma which
strengthens and generalizes Lemma 2.5.12

Lemma 2.6.32. Let n = m + 1. Let a ∈ [OnM ]<ω and let N = Mna. Let

π : N →Σj N , where N is a J�model. Then:

(a) There are unique M,a such that u ∈ Rn
M

and M
na

= N .

(b) There is a unique π ⊃ π such that π : M →
Σ

(m)
0

M strictly and

π(a) = a.

(c) π : M →
Σ

(n)
j

M .

Proof: We �rst prove existence, then uniquenes. The existence assertion in
(a) follows by:

Claim 1 There are M,a, π̂ ⊃ π such that M
na

= N , a ∈ Rn
M
,

π̂ : M →Σ1 M , π̂(a) = a.

Proof: We proceed by induction on m. For m = 0 this immediate
by Lemma 2.5.12. Now let m = h + 1. We �rst apply Lemma 2.5.12
to Mma. It is clear from our de�nition that ρMm,a ≥ ρnM . Set N ′ =
(Mm,a)a∩ρ

m
M . Then N ′ = 〈JAρ′ , T ′〉, where ρ′ = ρMma . But it is clear

from our de�nition that Tna = T ′ ∩ JAρnM . Hence:

(1) π : N →Σ0 N
′.

By Lemma 2.5.12 there are then M̃, ã, π̃ ⊃ π such that M̃ ã = N ′,
ã ∈ RM̃ , π̃ : M̃ →Σ1 M

m,a and π̃(ã) = a ∩ ρmM = a(m).

(Note: Throughout this proof we use the notation:

a(i) =: a ∩ ρi for i = 0, . . . ,m.)

By the induction hypothesis there are then M,a, π̂ ⊃ π̃ such that

M
ma

= M̃ , π̂ : M →Σ1 M , and π̂(a) = a.

We observe that:

(2) ã = a ∩ ρm
M
.

Proof:
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(⊂) Let ρ̃ =: ρm
M

= On∩M̃ . Then ã ⊂ ρ̃. But π̂(ã) = π̃(ã) =
a ∩ ρmM ⊂ a = π̂(a). Hence ã ⊂ a.
(⊃) π̂(a∩ ρ̃) = π̂′′(a∩ ρ̃) ⊂ ρmM ∩a = π̂(ã), since π̂′′ρ̃ ⊂ ρmM . Hence
a ∩ ρ̃ = ã. QED (2)

Since ã ∈ Rma
M

we conclude that a ∈ Rn
M

and N = (Mma)a∩ρ̃ =

M
n,a

. QED (Claim 1)

We now turn to the existence assertion in (b).

Claim 2 LetM
a

= N and a ∈ Rn
M
. There is π ⊃ π sucht that π : M →

Σ
(m)
1

M and π(a) = a.

Proof: Let x1, . . . , xn ∈M with xi = F i(zi)(i = 1, . . . , r), where F i is

a Σ
(m)
1 (M) good function in the parameters a(0), . . . , a(n) and zi ∈ N .

Let Fi have the same Σ
(m)
1 (M)�good de�nition in a(0), . . . , a(m). Let

R(u1, . . . , ur) be a Σ
(n)
1 (M) relation and let R be Σ

(n)
1 (M) by the same

de�nition.

Then R(F 1(z1), . . . , F r(zr)) is Σ
(m)
1 (M) in a(0), . . . , a(m) and

R(F1(z1), . . . , Fr(zr)) is Σ
(m)
1 (M) in a(0), . . . , a(m) by the same de�ni-

tion. Hence there is i < ω such that

R(F (~z)↔ 〈i, 〈~z〉〉 ∈ T
R(F (~z))↔ 〈i, 〈~z〉〉 ∈ T

where N = 〈JAρ , T 〉, N = 〈JAρ , T 〉. Thus R(F (~z)) is rud in N and

R(F (~z)) is rud in N by the same rud de�nition. But π : N →Σ0 N .

Hence:

R(F 1(zi), . . . , F r(zr))↔ R(F1(π(z1)), . . . , Fr(π(zr))).

Thus there is π : M →
Σ

(n)
1

M de�ned by π(F (ξ)) =: F (π(ξ)) whenever

ξ ∈ On∩N , F is Σ
(m)
1 (M)� good in a(0), . . . , a(m) and F is Σ

(m)
1 (M)�

good in a(0), . . . , a(m) by the same de�nition. But then

π(z) = π(id(z)) = π(z) for z ∈ N.

Hence π ⊃ π. But clearly

π(a)= π(a(0) ∪ . . . ∪ a(m))

= a(0) ∪ . . . ∪ a(m) = a.

QED (Claim 2)

We now verify (c):
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Claim 3 Let M,a, π be as in Claim 2. Then π : M →
Σ

(n)
j

M .

Proof: We �rst note that π, being Σ
(n)
1 �preserving, is strictly so �

i.e. ρi
M

= π−1′′ρiM for i = 0, . . . ,m. It follows easily that:

π(a(i)) = π′′a(i) = a(i) for i = 0, . . . ,m.

We now proceed the cases.

Case 1 j = 0.

It su�ces to show that if ϕ is Σ
(n)
1 and x1, . . . , xr ∈ N , then

M |= ϕ[x1, . . . , xr]→M |= ϕ[π(x1), . . . , π(xr)].

Let x1, . . . , xr ∈M . Then xi = F i(zi)(i = 1, . . . , r) where zi ∈ N
and F i is Σ

(m)
1 (M)�good in a(0), . . . , a(m). Let Fi be Σ

(m)
1 (M)�

good in a(0), . . . , a(m) by the same good de�nition.

By Corollary 2.6.19, we know that M |= ϕ[F 1(z1), . . . , F r(zr)] is
equivalent to

N |= Ψ[z1, . . . , zr]

for a certain Σ1 formula Ψ. The same reduction on the M side
shows that M |= ϕ[F1(z1), . . . , Fr(zr)] is equivalent to: N |=
Ψ[z1, . . . , zr] for z1, . . . , zr ∈ N , where Ψ is the same formula.

Since π is Σ0�preserving we then get:

M |= ϕ[~x]↔M |= ϕ[F (~z)]

↔ N |= Ψ[~z]

→ N |= Ψ[π(~z)]

↔M |= ϕ[F (π(~z))]

↔M |= ϕ[π(~x)].

QED (Case 1)

Case 2 j > 0.

This is entirely similar. Let ϕ be Σ
(n)
j . By Corollary 2.6.19 it

follows easily that there is a Σj formula Ψ such that: M |=
ϕ[F 1(z1), . . . , F r(zr)] is equivalent to:

N |= Ψ[z1, . . . , zr].

Since the corresponding reduction holds on the M�side, we get

M |= ϕ[~x]↔M |= ϕ[π(~x)],

since π(xi) = π(F i(zi)) = Fi(π(zi)). QED (Claim 3)
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This proves existence. We now prove uniqueness.

Claim 4 The uniqueness assertion of (a) holds.

Proof: Let M̂, â be such that M̂n,â = N and â ∈ RN
M̂
.

Claim M̂ = M, â = a.

Proof: By a virtual repetition of the proof in Claim 2 there is a
π : M̂ →

Σ
(m)
1

M de�ned by:

(3) π(F̂ (z)) = F (z) whenever z ∈ N , F̂ is a good Σ
(m)
1 (M̂) function

in â(0), . . . , â(m) and F is the Σ
(m)
1 (M) function in a(0), . . . , a(m)

with the same good de�nition.

But π is then onto. Hence π is an isomorphism of M̂ with M . Since
M̂,M are transitive, we conclude that M = M̂, a = â.

QED (Claim 4)

Finally we prove the uniqueness assertion of (b):

Claim 5 Let π′ : M →
Σ

(m)
0

M strictly, such that π′(a) = a. Then π′ = π.

Proof: By strictness we can again conclude that π′(a(i)) = a(i) for

i = 0, . . . ,m. Let x ∈M , x = F (z), where z ∈ N and F is a Σ
(m)
1 (M)

good function in the parameters a(0), . . . , a(m). Let F be Σ
(m)
1 (M) in

a(0), . . . , a(m) by the same good de�nition.

The statement: x = F (z) is Σ
(m)
2 (M) in a(0), . . . , a(m). Since π′ is

Σ
(m)
0 �preserving, the corresponding statement must hold in M � i.e.

π′(x) = F (π(z)) = π(x).
QED (Lemma 2.6.32)

2.7 Liftups

2.7.1 The Σ0 liftup

A concept which, under a variety of names, is frequently used in set theory
is the liftup (or as we shall call it here, the Σ0 liftup). We can de�ne it as
follows:

De�nition 2.7.1. Let M be acceptable. Let τ > ω be a cardinal in M . Let
H = HM

τ and let π : H →Σ0 H
′ co�nally. We say that 〈M ′, π′〉 is a Σ0 liftup

of 〈M,π〉 i� M ′ is transitive and:

(a) π′ ⊃ π and π′ : M →Σ0 M
′
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(b) Every element of M ′ has the form π′(f)(x) for an x ∈ H ′ and an
f ∈ Γ0, where Γ0 = Γ0(τ,M) is the set of functions f ∈ M such that
dom(f) ∈ H.

(Note The condition of acceptability can be relaxed considerably, but that
is uninteresting for our purposes.)

If 〈M ′, π′〉 is a liftup of 〈M,π〉 it follows easily that:

Lemma 2.7.1. π′ : M →Σ0 M
′ co�nally.

Proof: Let y ∈ M ′, y = π′(f)(x) where x ∈ H ′ and f ∈ Γ0, then y ∈
π′(rng(f)). QED (Lemma 2.7.1)

Lemma 2.7.2. 〈M ′, π′〉 is the only liftup of 〈M,π〉.

Proof: Suppose not. Let 〈M∗, π∗〉 be another liftup. Let ϕ(v1, . . . , vn) be
Σ0. Then

M ′ |= ϕ[π′(f1)(x1), . . . , π′(fn)(xn)]↔

〈x1, . . . , xn〉 ∈ π({〈~z〉|M |ϕ[~f(~z)]})↔
M∗ |= ϕ[π∗(f1)(x1), . . . , π∗(fn)(xn)].

Hence there is an isomorphism σ of M ′ onto M∗ de�ned by:

σ(π′(f)(x)) = π∗(f)(x)

for f ∈ Γ0, x ∈ π(dom(f)).

But M ′,M∗ are transitive. Hence σ = id, M ′ = M∗, π′ = π∗.
QED (Lemma 2.7.2)

(Note M |= ϕ[~f(~z)] means the same as

∨
y1 . . . yn(

n∧
i=1

yi = fi(zi) ∧M |= ϕ[~y]).

Hence if e = {〈~z〉|M |= ϕ[~f(~z)]}, then e ⊂
n
×
i=1

dom(fi) ∈ H. Hence e ∈ M
by rud closure, since e is Σ0(M). But then e ∈ H, since P(u) ∩M ⊂ H for
u ∈ H.)

But when des the liftup exist? In answering this question it is useful to devise
a 'term model' for the putative liftup rather like the ultrapower construction:

De�nition 2.7.2. Let M, τ, π : H →Σ0 H
′ be as above. The term model

D = D(M,π) is de�ned as follows. Let e.g. M = 〈JAα , B〉. D =: 〈D,∼=
, ∈̃, Ã, B̃〉 where
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D = the set of pairs 〈f, x〉 such that f ∈ Γ0 and x ∈ H ′

〈f, x〉 ∼= 〈g, y〉 ↔: 〈x, y〉 ∈ π({〈z, w〉|f(z) = g(y)})
〈f, x〉∈̃〈g, y〉 ↔: 〈x, y〉 ∈ π({〈z, w〉|f(z) ∈ g(y)})

Ã〈f, x〉 ↔: x ∈ π({z|Af(z)})

B̃〈f, x〉 ↔: x ∈ π({z|Bf(z)})

(Note D is an 'equality model', since the identity predicate = is interpreted
by ∼= rather than the identity.)

�oz theorem for D then reach:

Lemma 2.7.3. Let ϕ = ϕ(v1, . . . , vn) be Σ0. Then

D |= ϕ[〈f1, x1〉, . . . , 〈fn, xn〉]↔ 〈x1, . . . , xn〉 ∈ π({〈~z〉|M |= ϕ[~f(~z)]}).

Proof: (Sketch)
We prove this by induction on the formula ϕ. We display a typical case of the
induction. Let ϕ =

∨
u ∈ v1Ψ. By bound relettering we can assume w.l.o.g.

that u is not among v1, . . . , vn. Hence u, v1, . . . , vn is a good sequence for Ψ.
We �rst prove (→). Assume:

D |= ϕ[〈f1, x1〉, . . . , 〈fn, xn〉].

Claim 〈x1, . . . , xn〉 ∈ π(e) where

e = {〈z1, . . . , zn〉|M |= ϕ[f1(z1) . . . fn(zn)]}.

Proof: By our assumption there is 〈g, y〉 ∈ D such that 〈g, y〉∈̃〈f1, ?〉 and:

D |= Ψ[〈g, y〉, 〈f1, x1〉, . . . , 〈fn, xn〉].

By the induction hypothesis we conclude that 〈y, ~x〉 ∈ π(ẽ) where:

ẽ = {〈w, ~z〉|g(w) ∈ f1(z1) ∧M |= Ψ[g(w), ~f(~z)}.

Clearly e, ẽ ∈ H and

H |= ∧w, ~z(〈w, ~z〉 ∈ ẽ→ 〈~z〉 ∈ e).

Hence

H ′ |= ∧w, ~z(〈w, ~z〉 ∈ πẽ→ 〈~z〉 ∈ π(e)).

Hence 〈~x〉 ∈ π(e). QED (→)
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We now prove (←)
We assume that 〈x1, . . . , xn〉 ∈ π(e) and must prove:

Claim D |= ϕ[〈f1, x1〉, . . . , 〈fn, xn〉].

Proof: Let r ∈M be a well ordering of rng(f1). For 〈~z〉 ∈ e set:

g(〈~z〉) = the r�least w sucht that M |=
M |= Ψ[w, f1(z1), . . . , fn(zn)].

Then g ∈M and dom(g) = e ∈ H. Now let ẽ be de�ned as above with this
g. Then:

H |=
∧
z1, . . . , zn(〈~z〉 ∈ e↔ 〈〈~z〉, ~z〉 ∈ ẽ).

But then the corresponding statement holds of π(e), π(ẽ) in H ′. Hence

〈〈~x〉, ~x〉 ∈ π(ẽ).

By the induction hypothesis we conclude:

D |= Ψ[〈g, 〈~x〉〉, 〈f1, x1〉, . . . , 〈fn, xn〉].

The conclusion is immediate. QED (Lemma 2.7.3)

The liftup of 〈M,π〉 can only exist if the relation ẽ is well founded:

Lemma 2.7.4. Let ∈̃ be ill founded. Then there is no 〈M ′, π′〉 such that

π′ : M →Σ0 M
′. M ′ is transitive, and π′ ⊃ π.

Proof: Suppose not. Let 〈fi+1, xi+1〉∈̃〈fi, xi〉 for i < w. Then

〈xi+1, xi〉 ∈ π{〈z, w〉|fi+1(z) ∈ fi(w)}.

Hence π′(fi+1)(xi+1) ∈ π′(fi)(xi)(i < w).
Contradiction! QED (Lemma 2.7.4)

Conversely we have:

Lemma 2.7.5. Let ∈̃ be well founded. Then the liftup of 〈M,π〉 exists.

Proof: We shall explicitly construct a liftup from the term model D. The
proof will stretch over several subclaims.

De�nition 2.7.3. x∗ = π∗(x) =: 〈constx, 0〉, where constx =: {〈x, 0〉 = the
constant function x de�ned on {0}.

Then:
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(1) π∗ : M →Σ0 D.
Proof: Let ϕ(v1, . . . , vn) be Σ0. Set:

e = {〈z1, . . . , zn〉|M |= ϕ[constx1(z1), . . . , constxn(zn)]}.

Obviously:

e =

{
{〈0, . . . , 0〉} if M |= ϕ[x1, . . . , xn]

∅ if not.

Hence by �oz theorem:

D |= ϕ[x∗1, . . . , x
∗
n] ↔ 〈0, . . . , o〉 ∈ π(e)

M |= ϕ[x1, . . . , xn]

(2) D |= Extensionality.
Proof: Let ϕ(u, v) =:

∧
w ∈ uw ∈ v ∧

∧
w ∈ v w ∈ u.

Claim D |= ϕ[a, b]→ a ∼= b for a, b ∈ D. This reduces to the Claim:
Let a = 〈f, x〉, b = 〈g, y〉. Then

D |= ϕ[〈f, x〉, 〈g, y〉] ↔ 〈x, y〉 ∈ π(e)

↔ 〈f, x〉 ∼= 〈g, y〉

where
e = {〈z, w〉|M |= ϕ[z, w]}

= {〈z, w〉|f(z) = g(w)}

QED (2)

Since ∼= is a congruence relation for D we can factor D by ∼=, getting:

D̂ = (D\ ∼=) = 〈D̂, ∈̂, Â, B̂〉

where:
D̂ = {ŝ|s ∈ D}
ŝ =: {t|t ∼= s} for s ∈ D
ŝ∈̂t̂↔: s∈̃t

Âŝ↔: Ãs, B̂ŝ↔: B̂s.

Then D̂ is a well founded identity model satisfying extensionality. By
Mostowski's isomorphism theorem there is an isomorphism k of D̂ onto
M ′, where M ′ = 〈|M ′|,∈, A′, B′〉 is transitive.
Set:

[s] =: k(ŝ) for s ∈ D
π′(x) =: [x∗] for x ∈M.

Then by (1):
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(3) π′ : M →Σ0 M
′.

Lemma 2.7.5 will then follow by:

Lemma 2.7.6. 〈M ′, π′〉 is the liftup of 〈M,π〉.

We shall often write [f, x] for [〈f, x〉]. Clearly every s ∈ M ′ has the
form [f, x] where f ∈M ; dom(f) ∈ H, x ∈ H ′.

De�nition 2.7.4. H̃ =: the set of [f, x] such that 〈f, x〉 ∈ D and
f ∈ H.

We intend to show that [f, x] = π(f)(x) for x ∈ H̃. As a �rst step we
show:

(4) H̃ is transitive.

Proof: Let s ∈ [f, x] where f ∈ H.

Claim s = [g, y] for a g ∈ H.

Proof: Let s = [g′, y]. Then 〈y, x〉 ∈ π(e) where: e = {〈u, v〉|g′(u) ∈
f(v)} set:

e′ = {u|g′(u) ∈ rng(f)}, g = g′ �e′.

Then g ⊂ rng(f) × dom(g′) ∈ H. Hence g ∈ H. Then [g′, y] = [g, y]
since π(g′)(y) = π(g)(y) and hence
〈y, y〉 ∈ π({〈u, v〉|g′(u) = g(v)}). But e = {〈u, v〉|g(u) ∈ f(v)}. Hence
[g, y] ∈ [f, x]. QED (4)

But then:

(5) [f, x] = π(f)(x) for f ∈ H, 〈f, x〉 ∈ D.

Proof: Let f, g ∈ H, 〈f, x〉, 〈g, y〉 ∈ D. Then:

[f, x] ∈ [g, y] ↔ 〈x, y〉 ∈ π(e)

↔ π(f)(x) ∈ π(g)(y)

where e = {〈u, v〉|f(u) ∈ g(v)}. Hence there is an ∈�isomorphism σ of
H onto H̃ de�ned by:

σ(π(f)(x)) =: [f, x].

But then σ = id, since H, H̃ are transitive. (5)

But then:

(6) π′ ⊃ π.
Proof: Let x ∈ H. Then π′(x) = [constx, 0] = π(constx)(0) = π(x)
by (5).
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(7) [f, x] = π′(f)(x) for 〈f, x〉 ∈ D.

Proof: Let a = dom(f). Then [ida, x] = idπ(a)(x) = x by (5). Hence
it su�ces to show:

[f, x] = [constf , 0]([ida, x]).

But this says that 〈x, 0〉 ∈ π(e) where:

e = {〈z, u〉|f(z) = constf (u)(ida(z))}
= {〈z, 0〉|f(z) = f(z)} = a× {0}.

QED (7)

Lemma 2.7.6 is then immediate by (3), (6) and (7). QED (Lemma 2.7.5)

Lemma 2.7.7. Let π∗ ⊃ π such that π∗ : M →Σ0 M∗. Then the liftup

〈M ′, π′〉 of 〈M,π〉 exists. Moreover there is a σ : M ′ →Σ0 M∗ uniquely

de�ned by the condition:

σ �H ′ = id, σπ′ = π∗.

Proof: 〈M ′, π′〉 exists, since ∈̃ is well founded, since 〈f, x〉∈̃〈g, y〉 ↔ π∗(f)(x) ∈
π∗(g)(y). But then:

M ′ |= ϕ[π′(f1)(x1), . . . , π′(fr)(xr)]↔
↔ 〈x1, . . . , xr〉 ∈ π(e)

↔M∗ |= ϕ[π∗(f1)(x1), . . . , π∗(fr)(xr)]

where e = {〈z1, . . . , zr〉|M |= ϕ[~f(~z)]}. Hence there is σ : M ′ →Σ0 M∗

de�ned by:
σ(π′(f)(x)) = π∗(f)(x) for 〈f, x〉 ∈ D.

Now let σ̃ : M ′ →Σ0 M
∗ such that σ̃ �H ′ = id and σ̃π′ = πr.

Claim σ̃ = σ.
Let s ∈ M ′, s = π′(f)(x). Then σ̃(π′(f)) = π∗(f), σ̃(x) = x. Hence
σ̃(s) = π∗(f)(x) = σ(s). QED (Lemma 2.7.7)

2.7.2 The Σ
(n)
0 liftup

We now attempt to generalize the notion of Σ0 liftup. We suppose as before
that τ > w is a cardinal in M and H = HM

τ . As before we suppose that
π′ : H →Σ0 H

′ co�nally. Now let ρn ≥ τ . The Σ0�liftup was the "minimal"
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〈M ′, π′〉 such that π′ ⊃ π and π′ : M →Σ0 M ′. We shall now consider
pairs 〈M ′, π′〉 such that π′ ⊃ π and π′ : M →Σ0 M

′. Among such pairs
〈M ′, π′〉 we want to de�ne a "minimal" one and show, if possible, that it
exists. The minimality of the Σ0 liftup was expressed by the condition that
every element of M ′ have the π′(f)(x), where x ∈ H ′ and f ∈ Γ0(τ,M).
As a �rst step to generalizing this de�nition we replace Γ0(τ,M) by a larger
class of functions Γn(τ,M).

De�nition 2.7.5. Let n > 0 such that τ ≤ ρnM . Γn(τ,M) is the set of maps
f such that

(a) dom(f) ∈ H

(b) For some i < n there is a Σ(i)(M) good function G and a parameter
p ∈M such that f(x) = G(x, p) for all x ∈ dom(f).

Note Σ
(i)
1 good functions are many sorted, hence any such function can be

identi�ed with a pair consisting of its �eld and its arity. An element of Γn,
on the other hand, is 1�sorted in the classical sense, and can be identi�ed
with its �eld.

Note This de�nition makes sense for the case n = ω, and we will not exclude

this case. A Σ
(ω)
0 formula (or relation) then means any formula (or relation)

which is Σ
(i)
0 for an i < ω � i.e. Σ

(ω)
0 = Σ∗.

We note:

Lemma 2.7.8. Let f ∈ Γn such that rng(f) ⊂ H i, where i < n. Then

f(x) = G(x, p) for x ∈ dom(f) where G is a good Σ
(h)
1 function to H i for

some h < n.

Proof: Let f(x) = G′(x, p) for x ∈ dom(f) where G′ is a good Σ
(n)
1 function

to Hj where h, j < n. Since every good Σ
(n)
1 function for k ≥ h, we can

assume w.l.o.g. that i, j ≤ h. Let F be the identity function de�ned by
vi = uj (i.e. yi = F (xj)↔ yi = xj). Set: G(x, y) ': F (G′(x, y)). Then F is

a good Σ
(h)
1 function and so is G, where f(x) = G(x, p) for x ∈ dom(f).

QED (Lemma 2.7.8)

Lemma 2.7.9. Γi(τ,m) ⊂ Γn(τ,M) for i < n.

Proof: For 0 < i this is immediat by the de�nition. Now let i = 0. If

f ∈ Γ0, then f(x) = G(x, f) for x ∈ dom(f) where G is the Σ
(0)
0 function

de�ned by
y = G(x, f)↔: (f is a function ∧

∧〈y, x〉 ∈ f).
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QED (Lemma 2.7.9)

The "natural" minimality condition for the Σ
(n)
0 liftup would then read: Each

element of M has the form π′(f)(x) where x ∈ H ′ and f ∈ Γn. But what
sequence can we make of the expression "π′(f)(x)" when f is not an element
of M? The following lemma rushes to our aid:

Lemma 2.7.10. Let π′ : M →
Σ

(n)
0

M ′ where n > 0 and π′ ⊃ π. There is a

unique map π′′ of Γn(τ,M) to Γn(π(τ),M ′) with the following property:

∗ Let f ∈ Γn(τ,M) such that f(x) = G(x, p) for x ∈ dom(f) where G

is a good Σ
(i)
1 function for an i < n and χ is a good Σ

(i)
1 de�nition of

G. Let G′ be the function de�ned on M ′ by χ. Let f ′ = π′′(f). Then

dom(f ′) = π(dom(f)) and f ′(x) = G′(x, π′(p)) for x ∈ dom(f ′).

Proof: As a �rst approximation, we simply pick G,χ with the above prop-
erties. Let G′ then be as above. Let d = dom(f). The statement∧
x ∈ d

∨
y y = G(x, p) is Σ

(n)
0 is d, p, so we have:∧

x ∈ π(d)
∨
y y = G′(x, π(p)).

De�ne f0 by dom(f0) = π(d) and f0(x) = G′(x, π(p)) for x ∈ π(d). The
problem is, of course, that G,χ where picked arbitrarily. We might also
have:

f(x) = H(x, q) for x ∈ d,

where H is Σ
(j)
1 (M) for a j < n and Ψ is a good Σ

(j)
1 de�nition of H. Let

H ′ be the good function on M ′ de�ned by Ψ. As before we can de�ne f1

by dom(f1) = π(d) and f1(x) = H ′(x, π′(q)) for x ∈ π(d). We must show:
f0 = f1. We note that: ∧

x ∈ dG(x, p) = H(x, q).

But this is a Σ
(n)
0 statement. Hence∧

x ∈ π(d)G′(x, p) = H ′(x, q).

Then f0 = f1. QED (Lemma 2.7.10)

Moreover, we get:

Lemma 2.7.11. Let n, π, τ, π′, π′′ be as above. Then π′′(f) = π′(f) for

f ∈ Γ0(τ,M).
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Proof: We know f(x) = G(x, f) for x ∈ d = dom(f), where:

y = G(x, f)↔: (f is a function ∧ y = f(x)).

Then π′′(f)(x) = G′(x, π′(f)) = π′(f)(x) for x ∈ π(d), where G′ has the
same de�nition over M ′. QED (Lemma 2.7.11)

Thus there is no ambignity in writing π′(f) instead of π′′(f) for f ∈ Γn.
Doing so, we de�ne:

De�nition 2.7.6. Let ω < τ < ρnM where n ≤ ω and τ is a cardinal in M .

Let H = HM
τ and let π : H →Σ0 H

′ co�nally. We call 〈M ′, π′〉 a Σ
(n)
0 liftup

of 〈M,π〉 i� the following hold:

(a) π′ ⊃ π and π′ : M →
Σ

(n)
0

M ′.

(b) Each element of M ′ has the form π′(f)(x), where f ∈ Γn(τ,M) and
x ∈ H ′.

(Thus the old Σ0 liftup is simply the special case: n = 0.)

De�nition 2.7.7. Γni (τ,M) =: the set of f ∈ Γn(τ,M) such that either
i < n and rng(f) ⊂ H i

M or i = n < ω and f ∈ H i
M .

(Here, as usual, H i = JρiM
[A] where M = 〈JAα , B〉.)

Lemma 2.7.12. Let f ∈ Γni (τ,M). Let π′ : M →
Σ

(n)
0

M ′ where π′ ⊃ π.

Then π′(f) ∈ Γni (π′(τ),M ′).

Proof:

Case 1 i = n. Then f ∈ HM
ρnM

. Hence π′(f) ∈ HM ′
ρnM

.

Case 2 i < n.

By Lemma 2.7.9 for some h < n there is a good Σ
(n)
1 (M) function G(u, v)

to H i and a parameter p such that

f(x) = G(x, p) for x ∈ dom(f).

Hence:
π′(f)(x) = G′(x, π′(p)) for x ∈ dom(π(f)),

where G′ is de�ned over M ′ by the same good Σ(n) de�nition. Hence
rng(π′(f)) ⊂ H i

M . QED (Lemma 2.7.12)

The following lemma will become our main tool in understanding Σ
(n)
0 liftups.
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Lemma 2.7.13. Let R(xi11 , . . . , x
ir
r ) be Σ

(n)
0 where i1, . . . , ir ≤ n. Let fl ∈

Γnil(l = 1, . . . , r). Then:

(a) The relation P is Σ
(n)
0 in a parameter where:

P (~z)↔: R(f1(z1), . . . , fr(zr)).

(b) Let π′ ⊃ π such that π′ : M →
Σ

(n)
0

M ′. Let R′ be Σ
(n)
0 (m′) by the same

de�nition as R. Then P ′ is Σ
(n)
0 (M ′) in π′(p) by the same de�nition

as P in p, where:

P ′(~z)↔: R′(π′(f1)(z1), . . . , π′(fr)(zr)).

Before proving this lemma we note some corollaries:

Corollary 2.7.14. Let e = {〈~z〉|P (~z)}. Then e ∈ H and π(e) = {〈~z〉|P ′(~z)}.

Proof: Clearly e ⊂ d =
r
×
l=1

dom(fl) ∈ H. But then d ∈ Hρn and e ∈ Hρn

since 〈Hρn , P∩Hρn〉 is amenable. Hence e ∈ H, sinceH = HM
τ and therefore

P(u) ∩M ⊂ H for u ∈ H.

Now set e′ = {〈~z〉|P ′(~z)}. Then e′ ⊂ π(d) =
r
×
l=1

dom(π(fl)) since π
′ ⊃ π and

hence π(dom(fl)) = dom(π(fl)). But∧
〈~z〉 ∈ d(〈~z〉 ∈ e↔ P (~z))

which is a Σ
(n)
0 statement about e, p. Hence the same statement holds of

π(e), π(p) in M ′. Hence∧
〈~z〉 ∈ π(d)(〈~z〉 ∈ π(e)↔ P ′(~z)).

Hence π(e) = e′. QED (Corollay 2.7.14)

Corollary 2.7.15. 〈M,π〉 has at most one Σ
(n)
0 liftup 〈M ′, π′〉.

Proof: Let 〈M∗, π∗〉 be a second such. Let ϕ(vi11 , . . . , v
ir
r ) be a Σ

(n)
0 for-

mula. (In fact, we could take it here as being Σ
(0)
0 .) Let e = {〈~z〉|M |=

ϕ[f1(z1), . . . , fr(zr)]} where fl ∈ Γnil(l = 1, . . . , r). Then:

M ′ |= ϕ[π′(f1)(x1), . . . , π′(fr)(xr)]↔
↔ 〈x1, . . . , xr〉 ∈ π(e)

↔M∗ |= ϕ[π∗(f1)(x1), . . . , π∗(fr)(xr)]
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for xl ∈ π(dom(fl)(l = 1, . . . , r).

Hence there is an isomorphism σ : M ′→̃M∗ de�ned by:

σ(π′(f)(x)) =: π∗(f)(x)

for f ∈ Γn, x ∈ π(dom(f)). But M ′,M∗ are transitive. Hence σ = id,M ′ =
M∗, π′ = π∗. QED (Corollary 2.7.15)

We now prove Lemma 2.7.13 by induction on n.

Case 1 n = 0.
Then f1, . . . , fr ∈ M and P is Σ0 in p = 〈f1, . . . , fr〉, since fi is rudi-
mentary in p and for su�ciently large h we have:

P (~z)↔
∨

y1,...,yr ∈ Ch(p)(
r∧
i=1

yi = fi(~zi) ∧R(~y))

where R is Σ0. If P
′ has the same Σ0 de�nition over M ′ in π′(p), then

P ′(z) ↔
∨
y1,...,yr

∈ Ch(π(p))(
r∧

n=1
yi = π(fi)(zi) ∧R(~y))

↔ R(π(~f)(~z))

QED

Case 2 n = w.
Then Σw

0 =
⋃
h<w

Σ
(n)
1 . Let R(xi11 , . . . , x

lr
r ) be Σ

(h)
1 . Since every Σ

(h)
1

relation is Σ
(k)
1 for k ≥ h, we can assume h taken large enough that

i1, . . . , ir ≤ h. We can also choose it large enough that:

fl(z) ' Gl(z, p) for l = 1, . . . , v

where Gl is a good Σ
(h)
1 map to H il . (We assume w.l.o.g. that p is the

same for l = 1, . . . , r and that dl = dom(fl) is rudimentary in p.) Set:

P (~z, y)↔: R(G1x1, y), . . . , G(xr, y)).

By �6 Lemma ??, P is Σ
(h)
1 (uniformly in the Σ

(h)
1 de�nition of R and

G1, . . . , Gr). Moreover:

P (~z)↔ P (~z, p).

Thus P is uniformly Σ
(h)
1 in p, which proves (a). But letting P ′ have

the same Σ
(h)
1 de�nition in π′(p) over M ′, we have:

P ′(~z) ↔ P ′(~z, π′(p))

↔ R′(π′(f1)(z1), . . . , π′(fr)(zr)),

which proves (b). QED (Case 2)
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Case 3 0 < n < w.
Let n = m+ 1. Rearranging arguments as necessary, we can take R as
given in the form:

R(yn1 , . . . , y
n
s , x

i1
1 , . . . , x

ir
r )

where i1, . . . , ir ≤ m. Let fl ∈ Γnil for l = 1, . . . , r and let g1, . . . , g1 ∈
Γnn.

Claim

(a) P is Σ
(n)
0 in a parameter p where

P (~w, ~z)↔: R(~g(~w), ~f(~z)).

(b) If π′,M ′ are as above and P ′ is Σ
(n)
0 (M ′) in π′(p) by the same

de�nition, then

P ′(w, ~z)↔ R′(π′(~g)(~w), π′(~f)(~z))

where R′ has the same Σ
(n)
0 de�nition over M ′.

We prove this by �rst substituting ~f(~z) and then ~g(~w), using two di�erent
arguments. The claim then follows from the pair of claims:

Claim 1 Let:
P0(~yn, ~z)↔= R(yn, f1(z1), . . . , fr(zr)).

Then:

(a) P0 is Σ
(n)
0 (M) in a parameter p0.

(b) Let π′,M ′, R′ be as above. Let P ′0 have the same Σ
(n)
0 (M ′) de�-

nition in π′(p0). Then:

P ′0(~yn, ~z)↔ R′(yn, π′(~f)(~z)).

Claim 2 Let
P (~w, ~z)↔: P0(g1(w1), . . . , gs(ws), ~z).

Then:

(a) P is Σ
(n)
0 (M) in a parameter p.

(b) Let π′,M ′, P ′0 be as above. Let P ′ have the same Σ
(n)
1 (M ′) de�-

nition in π′(p). Then

P ′(~w, ~z)↔ P ′0(π′(~g)(~w), ~z).
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We prove Claim 1 by imitating the argument in Case 2, taking h = m and
using �6 Lemma 2.6.11. The details are left to the reader. We then prove
Claim 2 by imitating the argument in Case 1: We know that g1, . . . , gs ∈ Hn.

Set: p = 〈g1, . . . , gn, p〉. Then P is Σ
(n)
0 (M) in p, since:

P (~w, ~z)↔
∨
y1 . . . ys ∈ Ch(p)(

s∧
i=1

yi = gi(wi) ∧ P0(~y, ~z))

where gi, p0 are rud in P , for a su�ciently large h. But if P ′ is Σ
(n)
0 (M ′) in

Π′(P ) by the same de�nition, we obviously have:

P ′(~w, ~z) ↔
∨
y1 . . . yr(

s∧
i=1
yi = π′(g)(wi) ∧ P ′0(~y, ~z))

P ′0(π′(~g)(~w), ~z).

QED (Lemma 2.7.13)

We can repeat the proof in Case 3 with "extra" arguments ~un. Thus, after re-
arranging arguments we would have R(~un, ~yn, xi11 , . . . , x

ir
r ) where i1, . . . , ir <

n. We would then de�ne

P (~un, ~w, ~z)↔: R(~un, ~g(~w), ~f(~z)).

This gives us:

Corollary 2.7.16. Let n < w. Let R(~un, xi11 , . . . , x
ir
r ) be Σ

(n)
0 where i1, . . . , ip ≤

n. Let fl ∈ Γnil for l = 1, . . . , r. Set:

P (~un, ~z)↔: R(~un, f1(z1), . . . , fr(zr)).

Then:

(a) P (~un, ~z) is Σ
(n)
0 in a parameter p.

(b) Let π′ ⊃ π such that π′ : M →
Σ

(n)
0

M ′. Let R′ be Σ
(n)
0 (M ′) by the same

de�nition. Let P ′ be Σ
(n)
0 (M ′) in π′(p) by the same de�nition. Then

P ′(~un, ~z)↔ R′(~un, π′(f1)(z1), . . . , π′(fr)(zr)).

By Corollary 2.7.15 〈M,π〉 can have at most one Σ
(n)
0 liftup. But when does

it have a liftup? In order to answer this � as before � de�ne a term model
D = D(n) for the supposed liftup, which will then exist whenever D is well
founded.
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De�nition 2.7.8. Let M, τ,H,H ′, π be as above where ρnM ≥ τ, n ≤ w.

The Σ
(n)
0 term model D = D(n) is de�ned as follows: (Let e.g.M = 〈JAα , B〉.)

We set: D = 〈D,∼=, ∈̃, Ã, B̃〉 where:

D = D(n) =: the set of pairs 〈f, x〉
such that f ∈ Γn(τ,M) and

x ∈ π(dom(f))

〈f, x〉 ∼= 〈g, y〉 ↔: 〈x, y〉 ∈ π(e), where

e = {〈z, w〉|f(z) = g(w)}.

〈f, x〉∈̃〈g, y〉 ↔: 〈x, y〉 ∈ π(e), where

e = {〈z, w〉|f(z) ∈ g(w)}

(similarly for Ã, B̃).

We shall interpret the model D in a many sorted language with variables of
type i < ω if n = ω and otherwise of type i ≤ n. The variables vi will range
over the domain Di de�ned by:

De�nition 2.7.9. Di = D
(n)
i =: {〈f, x〉 ∈ D|f ∈ Γni }.

Under this interpretation we obtain �os theorem in the form:

Lemma 2.7.17. Let ϕ(vi11 , . . . , v
ir
r ) be Σ

(n)
0 . Then:

D |= ϕ[〈f1, x1〉, . . . , 〈fr, xr〉]↔ 〈x1, . . . , xr〉 ∈ π(e)

where e = {〈~z〉|M |= ϕ[f1(z1), . . . , fr(zr)]} and 〈fl, xl〉 ∈ Dil for l = 1, . . . , r.

Proof: By induction on i we show:

Claim If i < n or i = n < w, then the assertion holds for Σ(i)0 formulae.

Proof: Let it hold for j < i. We proceed by induction on the formula ϕ.

Case 1 ϕ is primitive (i.e. ϕ is vi∈̇vj , vi=̇vj , Ȧvi or Ḃvi (for M = 〈JAα , B〉).
This is immediate by the de�nition of D.
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Case 2 ϕ is Σ
(j)
h where j < i and h = 0 or 1. If h = 0 this is immediate

by the induction hypothesis. Let h = 1. Then ϕ =
∨
ujΨ, where Ψ

is Σ
(i)
0 . By bound relettering we can assume w.l.o.g. that ui is not in

our good sequence vi11 , . . . , v
ir
r . We prove both directions, starting with

(→):

Let D |= ϕ[〈f1, x1〉, . . . , 〈fr, xr〉]. Then there is 〈g, y〉 ∈ Dj such that

D |= Ψ[〈g, y〉, 〈f1, x1〉, . . . , 〈fr, xr〉]

(uj , ~v being the good sequence for Ψ). Set e′ = {〈w, ~z〉|M |= Ψ[g(w), ~z(~x)]}.
Then 〈y, ~x〉 ∈ π(e′) by the induction hypothesis on i. But in M we
have: ∧

w, ~z(〈w, ~z〉 ∈ e′ → 〈~z〉 ∈ e).

This is a Π1 statement about e′, e. Since π : H →Σ1 H ′ we can
conclude: ∧

w, ~z(〈w, ~z〉 ∈ π(e′)→ 〈~z ∈ π(e)).

But 〈y, ~x〉 ∈ π(e′) by the induction hypothesis. Hence 〈~x ∈ π(e). This

proves (→). We now prove (←). Let 〈~x〉 ∈ π(e). Let R be the Σ
(j)
0

relation
R(w, z1, . . . , zr)↔= M |= ϕ[w, z1, . . . , zr].

Let G be a Σ
(j)
0 (M) map to Hj which uniformizes R. Then G is a

spezialization of a function G′(zh11 , . . . , zhrr ) such that hl ≤ j for l ≤ j.
Thus G′ is a good Σ

(j)
0 function. But

fl(z) = Fl(z, p) for z ∈ dom(fl) for l = 1, . . . , r

where Fl is a good Σ
(k)
0 map to Hhl for l = 1, . . . , r and j ≤ k < i. (We

assume w.l.o.g. that the parameter p is the same for all l = 1, . . . , rn.)
De�ne G′′(uk, w) by:

G′′(u,w) ': G′((u)r−1
0 , . . . , (u)r−1

r−1, w)

then G′′ is a good Σ
(k)
1 function. De�ne g by: dom(g) =

r
×
i=1

dom(fi)

and: g(〈~z〉) = G′′(〈~z〉, p) for 〈~z〉 ∈ dom(g). Then g ∈ Γn and g(〈~z〉) =
G(f1(z1), . . . , fr(zr)). Hence, letting:

e′ = {〈w, ~z〉|M |= Ψ[g(w), ~f(~z)]},

we have: ∧
~z(〈~z〉 ∈ e↔ 〈〈~z〉, ~z〉 ∈ e′).

This is a Π1 statement about e, e′ in H. Hence in H ′ we have:∧
~z(〈~z〉 ∈ π(e)↔ 〈〈~z〉, ~z〉 ∈ π(e′)).
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But then 〈〈~z〉, ~z〉 ∈ π(e′). By the induction hypothesis we conclude:

D |= Ψ[〈g, 〈~z〉〉, 〈f1, x1〉, . . . , 〈fr, xr〉].

Hence:

D |= ϕ[〈f1, x1〉, . . . , 〈fr, xr〉].

QED (Case 2)

Case 3 ϕ is Ψ0 ∧Ψ1,Ψ0 ∧Ψ1,Ψ0 → Ψ1,Ψ0 ↔ Ψ1, or ¬Ψ.

This is straightforward and we leave it to the reader.

Case 4 ϕ =
∨
ui ∈ vlχ or

∧
ui ∈ vlχ, where vl has type ≥ i. We display

the proof for the case ϕ =
∨
ui ∈ vlχ. We again assume w.l.o.g. that

u′ 6= vj for j = 1, . . . , r. Set: Ψ = (ui ∈ vl ∧ χ). Then ϕ is equivalent
to
∨
uiΨ. Using the induction hypothesis for χ we easily get:

(*)
D |= Ψ[〈g, y〉, 〈f1, xi〉, . . . , 〈fr, xr〉]

〈y, x1, . . . , xn〉 ∈ π(e′)

where e′ = {〈w, ~z〉|M |= Ψ[g(w), ~f(~z)]}. Using (∗), we consider two
subcases:

Case 4.1 i < n.
We simply repeat the proof in Case 2, using (∗) and with i in place of
j.

Case 4.2 i = n < w.
(Hence vl has type n.) For the direction (→) we can again repeat the
proof in Case 2. For the other direction we essentially revert to the
proof used initially for Σ0 liftups.

We know that e ∈ H and 〈~x〉 ∈ π(e), where e = {〈~z〉|M |= ϕ[f1(z1), . . . , fr(zr)]}.
Set:

R(wn, ~z)↔: M |= Ψ[wn, f1(z1), . . . , fr(zr)].

Then R is Σ
(n)
0 by Corollary 2.7.16. Moreover

∨
wnR(wn, ~z)↔ 〈~z〉 ∈ e.

Clearly fl ∈ Hn
M since fl ∈ Γnn. Let s ∈ Hn

M be a well odering of⋃
rng(fl). Clearly:

R(wn, ~z) → wn ∈ fl(zl)
→ wn ∈

⋃
rng(fl).

We de�ne a function g with domain e by:

g(〈~z〉) = the s�least w such that R(w, ~z).
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Since R is Σ
(n)
0 , it follows easily that g ∈ HM

ρn . Hence g ∈ Γnn. But
then∧
~z(〈~z〉 ∈ e↔ 〈〈~z〉, ~z〉 ∈ e′), where e′ is de�ned as above, using this g.

Hence in H ′ we have:∧
~z(〈~z〉 ∈ π(e)↔ 〈〈~z〉, ~z〉 ∈ π(e′)).

Since 〈~x〉 ∈ π(e) we conclude that 〈〈~x〉, ~x〉 ∈ π(e′). Hence:

D |= Ψ[〈g, 〈~x〉〉, 〈f1, x1〉, . . . , 〈fr, xr〉].

Hence:

D |= ϕ[〈f1, x1〉, . . . , 〈fr, xr〉].

QED (Lemma 2.7.17)

Exactly as before we get:

Lemma 2.7.18. If ∈̃ is ill founded, then the Σ
(n)
0 liftup of 〈M,π〉 does not

exist.

We leave it to the reader and prove the converse:

Lemma 2.7.19. If ∈̃ is well founded, then the Σ
(n)
0 liftup of 〈M,π〉 exists.

Proof: We shall again use the term model D to de�ne an explicit Σ
(n)
0 liftup.

We again de�ne:

De�nition 2.7.10. x∗ = π∗(x) =: 〈constx, 0〉, where constx =: {〈x, 0〉} =
the constant function x de�ned on {0}.

Using �oz theorem Lemma 2.7.17 we get:

(1) π∗ : M →
Σ

(n)
0

D
(where the variables vi range over Ji on the D side).

The proof is exactly like the corresponding proof for Σ0�liftups ((1) in
Lemma 2.7.5). In particular we have: π∗ : M →Σ0 D. Repeating the
proof of (2) in Lemma 2.7.5 we get:
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(2) D |= Extensionality.
Hence ∼= is again a congruenzrelation and we can factor D, getting:

D̂ = (D\ ∼=) = 〈D̂, ∈̂, Â, B̂〉

where
D̂ =: {ŝ|s ∈ D}, ŝ =: {t|t ∼= s} for s ∈ D
ŝ∈̂t̂↔: s∈̃t

Âŝ↔: Ãs, B̂ŝ↔: B̃s

Then D̂ is a well founded identity model satisfying extensionality. By
Mostowski's isomorphism theorem there is an isomorphism k of D̂ onto
M ′, where M ′ = 〈|M ′|,∈, A′, B′〉 is transitive. Set:

[s] =: k(ŝ) for s ∈ D
π′(x) =: [x∗] for x ∈M
Hi =: {ŝ|s ∈ Di}(i < n or i = n < w).

We shall initially interpret the variables vi on the M ′ side as ranging
over Hi. We call this the pseudo interpretation. Later we shall show
that it (almost) coincides with the intended interpretation. By (1) we
have

(3) π′ : M →
Σ

(n)
0

M ′ in the pseudo interpretation. (Hence π′ : M →
Σ

(n)
0

M ′.)

Lemma 2.7.19 then follows from:

Lemma 2.7.20. 〈M ′, π′〉 is the Σ(n) liftup of 〈M,π〉.

For n = 0 tis was proven in Lemma 2.7.6, so assume n > 0. We again
us the abbreviation:

[f, x] =: [〈f, x〉] for 〈f, x〉 ∈ D.

De�ning H̃ exactly as in the proof of Lemma 2.7.6, we can literally
repeat our previous proofs to get:

(4) H̃ is transitive.

(5) [f, x] = π(f)(x) if f ∈ H and 〈f, x〉 ∈ D. (Hence H̃ = H ′.)

(6) π′ ⊃ π.
(However (7) in Lemma 2.7.6 will have to be proven later.)

In order to see that π : M →Σ(n) M ′ in the intended interpretation we
must show that Hi = H i

M , for i < n and that Hn ⊂ Hn
M . As a �rst

step we show:
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(7) Hi is transitive for i ≤ n.
Proof: Let s ∈ Hi, t ∈ s. Let s = [f, x] where f ∈ Γni . We must show
that t = [g, y] for g ∈ Γni . Let t = [g′, y]. Then 〈y, x〉 ∈ π(e) where

e = {〈u, v〉|g′(u) ∈ f(v)}.

Set:
a =: {u|g′(u) ∈ rng(f)}, g = g′ ∧ a.

Claim 1 g ∈ Γni .

Proof: a ⊂ dom(q′) is Σ
(n)
0 . Hence a ∈ H and g ∈ Γn. If i < n,

then rng(g) ⊂ rng(f) ⊂ H i
M . Hence g ∈ Γni . Now let i = n. Then

rng(f) ∈ Γnn and the relation z = g(y) is Σ
(n)
0 . Hence g ∈ Hn

M .
QED (Claim 1)

Claim 2 t = [g, y]
Proof: ∧

u, v(〈u, v〉 ∈ e→ 〈u, u〉 ∈ e′)

where e′ = {〈u,w〉|g(u) = g′(w)}. Hence the same Π1 statement
holds of π(e), π(e′) in H ′. Hence 〈y, y〉 ∈ π(e′). Hence [g, y] =
[g′, y] = t. QED (7)

We can improve (3) to:

(8) Let Ψ =
∨
vi1v1 , . . . , v

ir
r ϕ, where ϕ is Σ

(n)
0 and il < n or il = n < w for

l = 1, . . . , r. Then π′ is "Ψ�elementary" in the sense that:

M |= Ψ[~x]↔M ′ |= Ψ[π′(~x)] in the pseudo interpretation.

Proof: We �rst prove (→). LetM |= ϕ[~z, ~x]. ThenM ′ |= ϕ[π′(~z), π′(~x)]
by (3).

We now prove (←). Let:

M ′ |= ϕ[[f1, z1], . . . , [fr, zr], π
′(~x)]

where fl ∈ Γnil for l = 1, . . . , r. Since π′(x) = [constx, 0], we then have:
〈z1, . . . , zr, 0 . . . 0〉 ∈ π(e), where:

e = {〈u1, . . . , ur, 0 . . . 0〉 : M |= ϕ[~f(~u), ~x]}.

Hence e 6= ∅. Hence ∨
v1 . . . vrM |= ϕ[~f(~v), ~x]

where rng(fl) ⊂ H il for l = 1, . . . , r. Hence M |= Ψ[~x]. QED (8)

If i < n, then every Π
(i)
1 formula is Σ

(n)
0 . Hence by (8):
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(9) If i < n then

π′ : M →
Σ

(i)
2

M ′ in the pseudo interpretation.

We also get:

(10) Let n < w. Then:

π′ �Hn
M : Hn

M →Σ0 Hn co�nally.

Proof: Let x ∈ Hn. We must show that x ∈ π′(a) for an a ∈ Hn
M . Let

x = [f, y], where f ∈ Γnn. Let d = dom(f), a = rng(f). Then y ∈ π(d)
and: ∧

z ∈ d 〈z, 0〉 ∈ e

where
e = {〈u, v〉|f(u) ∈ consta(v)}

= {〈u, 0〉|f(u) ∈ a}.

This is a Σ0 statement about d, e. Hence the same statement holds of
π(d), π(e) in Hn. Hence 〈z, 0〉 ∈ π(e). Hence [f, y] ∈ π′(a). QED (10)

(Note: (10) and (3) imply that π′ : M →
Σ

(n)
1

M ′ is the pseudo inter-

pretation, but this also follows directly from (8).)

Letting M = 〈JAα , B〉 and M ′ = 〈|M ′|, A′, B′〉 we de�ne:

Mi = 〈H i
M , A ∩H i

M , B ∩H i
M 〉,M ′i = 〈Hi, A

′ ∩Hi, B
′ ∩Hi〉

for i < n or i = n < w. Then each Mi is acceptable. It follows that:

(11) M ′i is acceptable.

Proof: If i = n, then π′ �Mn : Mn →Σ0 M
′
n co�nally by (3) and (10).

Hence M ′n is acceptable by �5 Lemma 2.5.5. If i < n, then π′ �Mi :
Mi →Σ

(i)
2

M ′i by (9). Hence M ′i is acceptable since acceptability is a

Π2 condition. QED (11)

We now examine the "correctness" of the pseudo interpretation. As a
�rst step we show:

(12) Let i + 1 ≤ n. Let A ⊂ Hi+1 be Σ
(i)
1 in the pseudo interpretation.

Then 〈Hi+1, A〉 is amenable.

Proof: Suppose not. Then there is A′ ⊂ Hi+1 such that A′ is Σ
(i)
1 in

the pseudo interpretation, but 〈Hi, A
′〉 is not amenable. Let:

A′(x)↔ B′(x, p)
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where B′ is Σ
(i)
1 in the pseudoo interpretation. For p ∈M ′ we set:

A′p =: {x|B′(x, p)}.

Let B be Σ
(i)
1 (M) by the same de�nition. For p ∈M we set:

Ap =: {x|B(x, p)}.

Case 1 i+ 1 < n.
Then

∨
p
∨
ai+1

∧
bi+1bi+1 6= al+1 ∩ A′p holds in the pseudo in-

terpretation. This has the form:
∨
p
∨
ai+1ϕ(p, ai+1) where ϕ

is Π
(i+1)
1 , hence Σ

(n)
0 in the pseudo interpretation. By (8) we

conclude that M |= ϕ(p, ai+1) for some p, ai+1 ∈ M . Hence

〈H i+1
M , Ap〉 is not amenable, where Ap is Σ

(i)
1 (M).

Contradiction! QED (Case 1)

Case 2 Case 1 fails.
Then i + 1 = n. Since π′ takes Hn

M co�nally to Hn. There
must be a ∈ Hn

M such that π(a) ∩ A′ /∈ Hn. From this we
derive a contradiction. Let A′ = A′p where p = [f, z]. Set:

B̃ = {〈z, w〉|B(w, f(z))}. Then B̃ is Σ
(i)
1 (M). Set: b = (d×a)∩B̃,

where d = dom(f). Then b ∈ Hn
M . De�ne g : d→ Hn

M by:

g(z) =: Af(z) ∩ a = {x ∈ a|〈z, x〉 ∈ b}.

Then g ∈ Hn
M , since it is rudimentary in a, b ∈ Hn

M . Let ϕ(un, vn, w)

be the Σ
(n)
0 statement expressing

u = Aw ∩ vn in M.

Then setting:

e = {〈v, 0, w〉|M |= ϕ[g(v), a, f(z)]}

we have: ∧
v ∈ d 〈v, 0, v〉 ∈ e.

But then the same holds of π(d), π(e) in Hn. Hence 〈z, 0, z〉 ∈
π(e). Hence: [g, z] = A[f,z] ∩ π(a) ∈ Hn.
Contradiction! QED (12)

On the other hand we have:

(13) Let i+ 1 < n. Let A ⊂ H i+1
M be Σ

(i)
1 (M) in the parameter p such that

A /∈ M . Let A′ be Σ
(i)
1 (M ′) in π′(p) by the same Σ

(i)
1 (M ′) de�nition

in the pseudo interpretation. Then A′ ∩Hi+1 /∈M ′.
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Proof: Suppose not. Then in M ′ we have:∨
a
∧
vi+1(vi+1 ∈ a↔ A′(vi+1)).

This has the form
∨
aϕ(a, π(p)) where ϕ is Π

(i+1)
1 hence Σ

(n)
0 . By (8)

it then follows that
∨
aϕ(a, p) holds in M . Hence A ∈M .

Contradiction! QED (13)

Recall that for any acceptableM = 〈JAα , B〉 we can de�ne ρiM , H
i
M by:

ρ0 = α

ρi+1 = the least ρ such that there is A which is

Σ
(i)
1 (M) with A ∩ ρ /∈M

H i = Jρi [A].

Hence by (11), (12), (13) we can prove by induction on i that:

(14) Let i < n. Then

(a) ρiM ′ = ρi, H
i
M ′ = Hi

(b) The pseudo interpretation is correct for formulae ϕ, all of whose
variables are of type ≤ i.

By (9) we then have:

(15) π′ : M →
Σ

(i)
2

M ′ for i < n.

This means that if n = ω, then π′ is automatically Σ∗�preserving. If
n < ω, however, it is not necessarily the case that Hn = Hn

M , � i.e.
the pseudo interpretation is not always correct. By (12), however we
do have:

(16) ρn ≤ ρnM , (hence Hn ⊂ Hn
M ′).

Using this we shall prove that π′ is Σ
(n)
0 �preserving. As a preliminary

we show:

(17) Let n < w. Let ϕ be a Σ
(n)
0 formula containing only variables of type

i ≤ n. Let vi11 , . . . , v
ir
r be a good sequence for ϕ. Let x1, . . . , xr ∈ M ′

such that xl ∈ Hil for l = 1, . . . , r. Then M |= ϕ[x1, . . . , xr] holds in
the correct sense i� it holds in the pseudo interpretation.

Proof: (sketch)

Let C0 be the set of all such ϕ with: ϕ is Σ
(i)
1 for an i < n. Let C be the

closure of C0 under sentential operation and bounded quanti�cations
of the form

∧
vn ∈ wnϕ,

∨
vn ∈ wnϕ. The claim holds for ϕ ∈ C0

by (15). We then show by induction on ϕ that it holds for ϕ ∈ C. In
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passing from ϕ to
∧
vn ∈ wnϕ we use the fact that wn is interpreted

by an element of Hn. QED (17)

Since π′′′H i
M ⊂ Hi for i ≤ n, we then conclude:

(18) π′ : M →
Σ

(n)
0

M ′.

It now remains only the show:

(19) [f, x] = π′(f)(x).

Proof: Let f(x) = G(x, p) for x ∈ dom(f), where G is Σ
(j)
1 good for

a j < n. Let a = dom(f). Let Ψ(u, v, w) be a good Σ
(j)
1 de�nition of

G. Set:
e = {〈z, y, w〉|M |= Ψ[f(z), ida(y), constp(w)}.

Then z ∈ a → 〈z, z, 0〉 ∈ e. Hence the same holds of π(a), π(e). But
x ∈ π(a). Hence:

M ′ |= Ψ[[f, x], [ida, x], [constp, x]],

where [ida, x] = x, [constp, 0] = π′(p). Hence:

[f, x] = G′(x, π′(p)) = π′(f)(x),

where G′ has the same Σ
(j)
1 de�nition. QED (19)

Lemma 2.7.20 is then immediate from (6), (18) and (19).
QED (Lemma 2.7.19)

As a corollary of the proof we have:

Lemma 2.7.21. Let 〈M ′, π′〉 be the Σ
(n)
0 liftup of 〈M,π〉. Then π′ is Σ

(i)
2

preserving for i < n.

Finally, we note that we have:

Lemma 2.7.22. Let π∗ ⊃ π such that π∗ : M →
Σ

(n)
0

M∗. Then the Σ
(n)
0

liftup 〈M ′, π′〉 of 〈M,π〉 exists. Moreover there is a unique map σ : M ′ →
Σ

(n)
0

M∗ such that σ �H ′ = id and σπ′ = π∗.

Proof: ∈̃ is well founded, since:

〈f, x〉∈̃〈g, y〉 ↔ π∗(f)(x) ∈ π∗(g)(y).

Thus 〈M ′, π′〉 exists. But for Σ
(n)
0 formulae ϕ = ϕ(vi11 , . . . , v

ir
r ) we have:

M ′ |= ϕ[π′(f1)(x1), . . . , π′(fr)(xr)]

↔ 〈x1, . . . , xn〉 ∈ π(e)

↔M∗ |= ϕ[π∗(f1)(x1), . . . , π∗(fr)(xr)]
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where:
e = {〈z1, . . . , zr〉|M |= ϕ[f1(z1), . . . , fr(zr)]}

and 〈fl, xl〉 ∈ Γnil for l = 1, . . . , r. Hence there is a Σ
(n)
0 �preserving embedding

σ : M ′ →M∗ de�ned by:

σ(π′(f)(x)) = π∗(f)(x) for 〈f, x〉 ∈ Γn.

But σ is the unique σ : M ′ →
Σ

(n)
0

M∗ such that σ �H ′ = id and σπ′ = π∗,

since, by the de�nition of π′(f) and π∗(f) for f ∈ Γn we then have:

σ(π′(f)(x)) = π∗(f)(x) for x ∈ π(dom(f)).

QED (Lemma 2.7.22)

We can improve the result by making stronger assumptions on the map π,
vor instance:

Lemma 2.7.23. Let 〈M∗, π∗〉 be the Σ
(n)
0 liftup of 〈M,π〉. Let π∗ �ρn+1

M = id
and P(ρn+1

M ) ∩M∗ ⊂M . Then ρnM∗ = supπ∗
′′
ρnM .

(Hence the pseudo interpretation is correct and π∗ is Σ
(n)
1 preserving.)

Proof: Suppose not. Let ρ̃ = supπ∗
′′
ρnM < ρnM∗ . Set:

Hn = Hn
M = JAMρnM

; H̃ = JAMρ̃ .

Then H̃ ∈M∗. Let A be Σ(n)(M) in p such that A ∩ ρn+1
M /∈M . Let:

Ax↔
∨
ynB(yn, x),

where B is Σ
(n)
0 in p. Let B∗ be Σ

(n)
0 (M∗) in π∗(p) by the same de�nition.

Then
π∗ �Hn : 〈Hn, B ∩Hn〉 →Σ1 〈H̃, B∗ ∩ H̃〉.

Then A ∩ ρn+1
M = Ã ∩ ρn+1

M , where:

Ã = {x|
∨
yn

∈ H̃ B∗(y, x)}.

But Ã is Σ
(n)
0 (M∗) in π∗(p) and H̃. Hence

A ∩ ρn+1
M = Ã ∩ ρn+1

M ∈ P(ρn+1
M ) ∩M∗ ⊂M.

Contradiction! QED (Lemma 2.7.13)


