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The Folland-Stein inequality. p*

Theorem (G.Folland & E.Stein)

Let G be a Carnot group G of homogeneous dimension Q. For any 1 < p < Q there exists
Sp = Sp(G) > 0 such that for u € C3°(Q2)

. 1/p* 1/p
([ 1wr anta)) < s ( [ 1xu o))
Q Q
The best constant is achieved. I

o Euler-Lagrange (after scaling) is >, X;(| Xu[P~2X;ju) = —uP" 1. Here,
IXul? = 3274 1 Xul?.

012 ,
@ Whenp=2,%7,X2u = — u0-2 -the Yamabe equation.
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The Yamabe equation on lwasawa groups

Theorem (w/ Garofalo)
Let G be a group of Heisenberg type. For every € # 0 the function

K(g) = Ce (€2 + Ix(9)P)? + 16ly(g)2) " (@72/%,  C. = [m(Q —2)e;(@-2/4

Q+2

is a positive, entire solution of the Yamabe equation Lu = — u?@-2.
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The Yamabe equation on lwasawa groups

Theorem (w/ Garofalo)
Let G be a group of Heisenberg type. For every € # 0 the function

K(g) = Ce (€2 + Ix(9)P)? + 16ly(g)2) " (@72/%,  C. = [m(Q —2)e;(@-2/4

Q+2

is a positive, entire solution of the Yamabe equation Lu = — uQ9—

N

| \

Definition
@ U has cylindrical symmetry (w.r.t. go € G) if Tg,U(g) = u(|x(9)|, ly(9)I)-
@ U: G — R has partial symmetry (w.r.t. go € G) if 7g,U(9) = u(|x(9)|,y(9))-
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The Yamabe equation on lwasawa groups

Theorem (w/ Garofalo)
Let G be a group of Heisenberg type. For every € # 0 the function

K(g) = Ce (€2 + Ix(9)P)? + 16ly(g)2) " (@72/%,  C. = [m(Q —2)e;(@-2/4

Q+2

is a positive, entire solution of the Yamabe equation Lu = — u?@-2.

v

@ U has cylindrical symmetry (w.r.t. go € G) if Tg,U(g) = u(|x(9)|, ly(9)I)-
@ U: G — R has partial symmetry (w.r.t. go € G) if 7g,U(9) = u(|x(9)|,y(9))-

N

Theorem (w/ Garofalo)
Let G be an Iwasawa group. Suppose U # 0 is an entire solution of the Yamabe equation.
a) If U has partial symmetry, then U has cylindrical symmetry.

b) If U # 0 is an entire solution of the the Yamabe equation with cylindrical symmetry. There
exists e > 0 s.t.

U(g) = 71g,K(9)-

() 3/33



The Riemannian Yamabe problem |

Let (M, g) - compact, Riemannian manifold, 2* = -2 If g = u*/("~2)g, then

n—1

4 Au— Scal- u = — Scal- v? 1.
n—2

@ Yamabe functional: T(u) = [,,42=} |Vu|? + Scal u? dvg.

@ Yamabe invariant: T([g]) = inf{T(u): [}, u? dvg = 1, u>0}.

@ For the round sphere T(S", [gst]) = n(n — 1)w,27/".
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The classical Obata

Theorem (Aubin, Talenti, Obata)

Let (S", gst) be the unit sphere inR™ 1. If g is a Riem. metric, g = $°gst, and Scalg = S = const,
then up to a homothety g is obtained from gs; by a conformal diffeo of the sphere, i.e.,

3¢ € Diff(S") s.t. Sg = ®* gt

Furthermore, ® = exp(tX), X = Vf, f = aoXo + - - - + a@nXn|gn-
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The classical Obata

Theorem (Aubin, Talenti, Obata)

Let (S", gst) be the unit sphere inR™ 1. If g is a Riem. metric, g = $°gst, and Scalg = S = const,
then up to a homothety g is obtained from gs; by a conformal diffeo of the sphere, i.e.,

Furthermore, ® = exp(tX), X = Vf, f = aoXo + - - - + a@nXn|gn-

”Proof” (Lee & Parker) g is Einstein. i.e., 0 = Ric, = Rico + %(quﬁ)o. Thus,
(V24)o = —%Ricg. Using 2V*(Ric,) = VS = 0, from the contracted Bianchi and S=const, it
follows

¢

div Rico(V,.) = —ﬁ|Rico|2.
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The classical Obata

Theorem (Aubin, Talenti, Obata)

Let (S", gst) be the unit sphere inR™ 1. If g is a Riem. metric, g = $°gst, and Scalg = S = const,
then up to a homothety g is obtained from gs; by a conformal diffeo of the sphere, i.e.,

Furthermore, ® = exp(tX), X = Vf, f = aoXo + - - - + a@nXn|gn-

Theorem (N. Trudinger, Th. Aubin, R. Schoen; A. Bahri)

Let (M",g), n > 3, be a compact Riemannian manifold. There is a g € [g], s.t., Scaly = const.
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The classical Obata

Theorem (Aubin, Talenti, Obata)

Let (S", gst) be the unit sphere inR™ 1. If g is a Riem. metric, g = $°gst, and Scalg = S = const,
then up to a homothety g is obtained from gs; by a conformal diffeo of the sphere, i.e.,

Furthermore, ® = exp(tX), X = Vf, f = aoXo + - - - + a@nXn|gn-

Theorem (N. Trudinger, Th. Aubin, R. Schoen; A. Bahri)

Let (M",g), n > 3, be a compact Riemannian manifold. There is a g € [g], s.t., Scaly = const.

@ (H. Yamabe, N. Trudinger, Th. Aubin). Always T([g]) < T(S", st). The Yamabe problem can
be solved on any compact manifold M with T([g]) < T(S", [gst])-

@ (Aubin) If n > 6 then T([g]) — T(S7, [gst]) > c||WI|2.

@ (Schoen). If 3 < n < 5, or if M is locally conformally flat, then T([g]) — T(S", [gst]) > cmo,
where m, is the mass of a one point blow-up (stereographic projection) of M.
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The CR Obata

(M2nt+19) < €+ - strongly pseudo-convex CR manifold.

Theorem (D. Jerison & J. Lee '88)

If  is the contact form of a pseudo-Hermitian structure proportional to the standard contact form 0
on the unit sphere in C™t' and Scaly =const, then up to a multiplicative constant = &* 8 with
a CR automorphism of the sphere.
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The CR Obata

(M2nt+19) < €+ - strongly pseudo-convex CR manifold.

Theorem (D. Jerison & J. Lee '88)

If  is the contact form of a pseudo-Hermitian structure proportional to the standard contact form 0
on the unit sphere in C™t' and Scaly =const, then up to a multiplicative constant = &* 8 with
a CR automorphism of the sphere.

Theorem (J. Lee '88)

If (M, §) is pseudo-Einstein, then 0 = €28 is pseudo-Einstein iff u is CR-pluriharmonic on M.
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The CR Yamabe problem I

Theorem (D. Jerison & J. Lee '87-'89)

a) T([0]) < T(S?™*1), where S2™+1 c C™1 s the sphere with its standard CR structure. If
T([6]) < T(S2"*1), then the Yamabe equation has a solution. [D. Jerison & J. Lee '87]
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The CR Yamabe problem I

Theorem (D. Jerison & J. Lee ‘87-'89)
a) T([6]) < T (821, where S?"+1 C C™t1 is the sphere with its standard CR structure. If
T([6]) < T(S2"*1), then the Yamabe equation has a solution. [D. Jerison & J. Lee '87]

b) Ifn> 2 and M is not locally CR equivalent to S?"+1, then T ([0]) < T(S?"t"). [D. Jerison & J.
Lee '89]

Y(6.) = { Y(827) (1 = ealS(g) ) + O(e), n=2;

Y(S%) (1 + colS(@) et In€) + O(e*), n=2.
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The CR Yamabe problem I

Theorem (D. Jerison & J. Lee ‘87-'89)
a) T([6]) < T (821, where S?"+1 C C™t1 is the sphere with its standard CR structure. If
T([6]) < T(S2"*1), then the Yamabe equation has a solution. [D. Jerison & J. Lee '87]

b) Ifn> 2 and M is not locally CR equivalent to S?"+1, then T ([0]) < T(S?"t"). [D. Jerison & J.
Lee '89]

Y(6.) = Y(S2M) (1 — ¢nlS(q)[2e?) + O(B), n>2;
TS (14 2l S(g)Pet Ine) + O(e*), n=2.

c) Ifn=1 or M is locally CR equivalent to S+, then the Yamabe equation has a solution. [R.
Yacoub ‘01, N. Gamara & R. Yacoub, 01]
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@ H-quaternions, g =t + ix + jy + kz, where t, x,y,z € Rand i, j, k satisfy the multiplication
rules
? =P =k =-1andjk = —1.
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@ H-quaternions, g =t + ix + jy + kz, where t, x,y,z € Rand i, j, k satisfy the multiplication

rules
? =P =k =-1andjk = —1.

° H"-quaternionic space, q = (g , q"), g% €H,q* =t*+ x>+ jy™ + kz* for
a=1,...,n. Conjugation: g% = q i.e., g% = t% — ix® — jy* — kz®.
Inner product: (9,¢') =q-q =3."_ qe
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@ H-quaternions, g =t + ix + jy + kz, where t, x,y,z € Rand i, j, k satisfy the multiplication

rules
? =P =k =-1andjk = —1.

@ Almost complex structures:

lg=gqi, Jg=qj, Jg=qj, and al+bJ+cK, @ +b>+c2=1.
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Quaternionic Contact Structures

Definition

M?n+3_quaternionic contact if we have
i) codimension three distribution H, locally, H = ﬂ2:1 Kerns, ns € S%-

ii) a 2-sphere bundle Q over M of almost complex structures Is : H — H, 2 = —1, satisfying
Il =—hbly =k andQ = {3/1 + bly + ¢k : P+ b2+cE= 1},'

i) a metric tensor g on H, s.t, 2g(IsX,Y) = dns(X,Y), X,Y e H.
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Quaternionic Contact Structures

Definition

M?n+3_quaternionic contact if we have
i) codimension three distribution H, locally, H = ﬂ§:1 Kerns, ns € S%-
ii) a 2-sphere bundle Q over M of almost complex structures Is : H — H, l§ = —1, satisfying
Il =—hbly =k andQ = {3/1 + bly + ¢k : P+ b2+cE= 1},'
i) a metric tensor g on H, s.t, 2g(IsX,Y) = dns(X,Y), X,Y e H.

@ Given n (and H) there exists at most one triple of a.c.str. and metric g that are compatible.
@ Rotating  we obtain the same qc-structure.
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Quaternionic Contact Structures

Definition

M?n+3_quaternionic contact if we have
i) codimension three distribution H, locally, H = ﬂ§:1 Kerns, ns € S%.
ii) a 2-sphere bundle Q over M of almost complex structures Is : H — H, 2 = —1, satisfying
Il =—hbly =k andQ = {3/1 + bl + ¢l : P+ b2+cE= 1},’
i) a metric tensor g on H, s.t., 29(lsX,Y) = dns(X,Y), X,Y € H.

@ Given n (and H) there exists at most one triple of a.c.str. and metric g that are compatible.
@ Rotating  we obtain the same qc-structure.

Theorem (O. Biquard)
Under the above conditions and n > 1, there exists a unique supplementary distribution V of H in
TM and a linear connection V on M, s.t.,
1. V and H are parallel
2.gandQ =32 ,(dnj|n)? are parallel
3. torsion T(A, B) = VB — VA — [A, B] satisfies
eVX,YeH, Txy=-[X,Y]lveV
eveeV, Tei= (X (Tgx)n) € (sp(n)+sp(1))*
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Theorem (O. Biquard)

Under the above conditions and n > 1, there exists a unique linear connection V on M and a
supplementary distribution V of H in TM s.t.

1. V and H are parallel

2.gandQ =% (dnj|n)? are parallel

3. torsion T(A, B) = V4B — VA — [A, B] satisfies

OVX,YEH, Txy=—[X,Y]lyeV
evEeV, Te:= (X~ (Tex)n) € (sp(n)+ sp(1))*+ |

@ Note: V is generated by the Reeb vector fields {&1, &2, &3}

ns(€k) = 0sks  (§sadns)jy =0,  (€sadni) iy = —(€k2dns) 1
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Theorem (O. Biquard)
Under the above conditions and n > 1, there exists a unique linear connection V on M and a

supplementary distribution V of H in TM s.t.
1. V and H are parallel
2.gandQ =% (dnj|n)? are parallel
3. torsion T(A, B) = V4B — VA — [A, B] satisfies

OVX,YEH, Txy=—[X,Y]lyeV
evVEeV, Te:= (X (Tex)n) € (sp(n) +sp(1))*: )

@ Note: V is generated by the Reeb vector fields {&1, &2, &3}

ns(€k) = 0sks  (§sadns)jy =0,  (€sadni) iy = —(€k2dns) 1

@ If the dimension of M is seven, n = 1, the above conditions do not always hold. Duchemin
shows that if we assume, in addition, the existence of Reeb vector fields as above, then there
is a connection as before. Henceforth, by a qc structure in dimension 7 we shall mean a qc

structure satisfying the Reeb conditions
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@ curvature: R(A, B)C = [V 4, VB]C — V|4 5 C;
@ (horizontal) Ricci tensor: Ric(X, Y) = RicV |y = try{Z — R(Z,X)Y}for X,Y € H
@ scalar curvature: Scal = try Ric.
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G(H)=H" x ImH, (q,v) € G (H),

(go,wo) 0 (q,w) = (Go + G,w + wo + 21M qo q),

() 12/33



G (H) =H" x ImH, (q,w) € G (H),
(do,wo) 0 (q,w) = (Go + Giw + wo + 21IM o),

I; endomorphism on H" using the right multiplication correspondingly by i, j and k.
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G (H) =H" x ImH, (q,w) € G (H),
(do,wo) 0 (q,w) = (Go + Giw + wo + 21IM o),

I; endomorphism on H" using the right multiplication correspondingly by i, j and k.
) & = (61,65, 85) = 5 (dw — q-dg + dq -G) or

= 1

&, = > dx — x“dt* + tYdx® — z%y* + y“dz“
= 1

&, = > dy — y“dt* + z%dx® + t%dy® — x“dz®
< 1

6, = > dz — z%dt™ — y®dx® + x“dy® + t“dz®.
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G(H) =H" x ImH, (q,w) € G(H),
(Goswo) o (q,w) = (Go + Gsw + wo + 21M o q),

I; endomorphism on H" using the right multiplication correspondingly by i, j and k.

) & = (61,65, 85) = 5 (dw — q-dg + dq -G) or

6, = %dx — X%dtY 4+ tdx® — z%dy® + y“dz®
~ 1

&, = > dy — y“dt* + z%dx® + t%dy® — x“dz®
6, = %dz — Z%dt* — y“dx® + x%dy® + t%dz“.

ii) Left-invariant horizontal vector fields

7] 7] 7] 0 7] 0 7] 7]
To = — +2x4— 42— 422 — Xy = — —2t%— -2z — 4 2y*—
o T ax Y 5 T4 5 % ox ay T az
Yo = 9 Jr22a272t“£72x“g Zo = 9 72y"‘£+2x“£72t”‘£.
Yo ox 12)% 0z 0Zq ox oy 0z
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G(H) =H" x ImH, (q,w) € G(H),
(Goswo) o (q,w) = (Go + Gsw + wo + 21M o q),

I; endomorphism on H" using the right multiplication correspondingly by i, j and k.

) & = (61,65, 85) = 5 (dw — q-dg + dq -G) or

6, = %dx — X%dtY 4+ tdx® — z%dy® + y“dz®
~ 1

&, = > dy — y“dt* + z%dx® + t%dy® — x“dz®
6, = %dz — Z%dt* — y“dx® + x%dy® + t%dz“.

ii) Left-invariant horizontal vector fields

7] 7] 7] 0 7] 0 7] 7]
To = — +2x4— 42— 422 — Xy = — —2t%— -2z — 4 2y*—
o T ax Y 5 T4 5 % ox ay T az
Yo = 9 Jr22a272t“£72x“g Zo = 9 72y"‘£+2x“£72t”‘£.
Yo ox 12)% 0z 0Zq ox oy 0z

iii) Left-invariant Reeb (vertical) vector fields &1, &2, €3 are

0 0 0
=2— =2— =2—.
&1 ox & oy &3 52
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G(H) =H" x ImH, (q,w) € G(H),
(Goswo) o (q,w) = (Go + Gsw + wo + 21M o q),

I; endomorphism on H" using the right multiplication correspondingly by i, j and k.

) & = (61,65, 85) = 5 (dw — q-dg + dq -G) or

6, = %dx — X%dtY 4+ tdx® — z%dy® + y“dz®
~ 1

&, = > dy — y“dt* + z%dx® + t%dy® — x“dz®
6, = %dz — Z%dt* — y“dx® + x%dy® + t%dz“.

ii) Left-invariant horizontal vector fields

1o} 0 0 0 0 0 0 1o}
To = — +2xY— 42y — +22 — Xo = — -2t — -2z — 4 2y*—
o T ax Y 5 T4 5 % ox ay T az
0 1o} 0 o 17} 10} 0 0
Yo = — +229— -2t — —2x“— Z, = — —2y“— +2x*— —2t*—.
Yo tez ox 12)% X 0z 0Zq y 8x+ oy 0z

iii) Left-invariant Reeb (vertical) vector fields &1, &2, €3 are
0 0 0
=2— =2— =2—.
& ox &2 oy & 52

On G (H) let V be the left-invariant connection - this is the Biquard connection. It is flat!
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@ Contact 3-form on the sphere S = {|g|? + |p|2 = 1} C H" x H,

f=dq-g+ dp-p — q-dg— p-dp.
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@ Contact 3-form on the sphere S = {|g|? + |p|2 = 1} C H" x H,
i =dq-q+ dp-p — q-dg— p-dp.
@ Identify G (H) with the boundary X of a Siegel domain in H” x H,
Y = {(q,p)eH"xH : Rep’ = |¢'[*},

by using the map (q',w’) (', |9/ [* — &)
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@ Contact 3-form on the sphere S = {|g|? + |p|2 = 1} C H" x H,
i =dq-q+ dp-p — q-dg— p-dp.
@ Identify G (H) with the boundary X of a Siegel domain in H” x H,
Y = {(q,p)eH"xH : Rep’ = |¢'[*},

by using the map (q',w’) — (q', ¢ — ).
@ Cayley transform, €: S\ {pt.} — %,

@.p) = ¢e(@p)=(1+n" a0+~ (1 =p)).
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@ Contact 3-form on the sphere S = {|g|? + |p|2 = 1} C H" x H,
i =dq-q+ dp-p — q-dg— p-dp.
@ Identify G (H) with the boundary X of a Siegel domain in H” x H,
Y = {(q,p)eH"xH : Rep’ = |¢'[*},

by using the map (q',w’) — (q', ¢ — ).
@ Cayley transform, €: S\ {pt.} — %,

@.p) = ¢e(@p)=(1+n" a0+~ (1 =p)).

06 = 2] 1lp|2 A7 X, A-unit quaternion (eg. of conformal quaternionic contact map).
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Conformal transformations

n = (m,n2,M), b € C*(M), p >0, ¥V € > (M:SO(3)).
n=p¥n

Lemma (O. Biquard '99)

Ifij = u*/(@=2) y then
4% Au— uScal = —u? 1 Scal,

where Au = try (Vdu), Q=4n+6,2* =2Q/(Q — 2).

@ Yamabe functional is

T(u) :/ 4842 19,2 & Scal?dy,
M Q-2

@ The Yamabe invariant is the infimum

() =T [ g = 1. u>0),

Theorem (W. Wang ’06)

a) Tu([n]) < Tganea([7])-
b) IfTp([n]) < Tganrs([7]), then the Yamabe problem has a solution.
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@ Sp(1)= {unit quaternions} C SO(4n), \g=qg- A~ ".
@ Sp(n)-quaternionic unitary C SO(4n).
@ Sp(n)Sp(1)-product in SO(4n).

Let W €End(H).

@ Sp(n)-invariant parts as follows
Y=yttt oyt oyt oyt

EXpliCitly, AUttt = vy — /1 \UI1 — /2\11/2 — I3\|1/37 etc.

@ The two Sp(n)Sp(1)-invariant components are given by

Wiy =Wt Vg =vr" 4wty

g
Using End(H) = A" the Sp(n)Sp(1)-invariant components are the projections on the
eigenspaces of the operator

T=5hh + b®hb + h® k.
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The Torsion Tensor. Tg, = 79 + U, U € V).

Tg_ -symmetric, /;U-skew-symmetric.

Theorem (w/ St. Ilvanov, I. Minchev)

Define T = T¢ I; € W[_y). We have Ric = (2n+2)T° + (4n+10)U + Sg.

() 15/33



The Torsion Tensor. Tg, = 79 + U, U € V).

Tg_ -symmetric, /;U-skew-symmetric.

Theorem (w/ St. Ilvanov, I. Minchev)

Define T = T¢ I; € W[_y). We have Ric = (2n+2)T° + (4n+10)U + Sg.

Definition

M is called qc-Einstein if T = 0 and U = 0. M is called qc-pseudo-Einstein if U = 0.
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The Torsion Tensor. Tg, = T + iU, U € V).

Tg_-symmetric, [;U-skew-symmetric.

Theorem (w/ St. Ilvanov, I. Minchev)

Define T® = TQ |; € Wi_y). We have Ric = (2n+2)T® + (4n+10)U + SZg.

Definition

M is called qc-Einstein if T = 0 and U = 0. M is called qc-pseudo-Einstein if U = 0.

Theorem (w/ St. lvanov, I. Minchev)

a) If M is qc-Einstein then Scal=const.
b) Suppose Scal # 0. The next conditions are equivalent:
i) (M**3.g,Q) is qc-Einstein manifold;
16n(

i) M is locally 3-Sasakian: locally there exists a matrix W € C€°°(M : SO(3)), s.t., (%W -n, Q) is
3-Sasakian;
iii) The torsion of the Biquard connection is identically zero.
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Transformation Of Torsion Under Conformal Transformation

The components of the torsion tensor transform according to the following formulas: if 7 = zln
o T° (X,Y) = T%X,Y) + h=' [Vdh]ism—1}, where the symmetric part is given by

3
[Vah]igym (X, Y) = Vah(X, Y) + ) dh(&s) ws(X, V).
s=1
o U(X,Y) = U(X,Y) + (2h)~'[ Vdh —2h—"ah® dh]g)o) OF if f = 57, 71 = fn, then

UX,Y) = UX,Y) — (2f)7'[ Vdflgo-
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Einstein deformations

Theorem (w/ St. lvanov, I. Minchev)

Let© = 21—,,@) be a conformal deformation of the standard qc-structure & on the quaternionic

Heisenberg group G (H). If © is also gc-Einstein, then up to a left translation the function h is
given by

h=c [(1 + v|gP)? + 203 + ¥+ z2)],

where ¢ and v are positive constants. All functions h of this form have this property.
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Einstein deformations
Theorem (w/ St. lvanov, I. Minchev)

Let© = 21—,7@) be a conformal deformation of the standard qc-structure & on the quaternionic
Heisenberg group G (H). If © is also gc-Einstein, then up to a left translation the function h is
given by

h=c [(1 + v|gP)? + 202 + 2 + z2)],

where ¢ and v are positive constants. All functions h of this form have this property.

Lemma (w/ St. Ivanov, |. Minchev)

Let (M, 77) be a compact qc-Einstein manifold of dimension (4n + 3). Letn = 21—,7 7 be a conformal
deformation with Scal,, =const.
a) Ifn> 1, then any one of the following conditions implies that ) is a qc-Einstein structure.

i) the vertical space of nj is integrable;
i) the QC structure n is qc-pseudo Einstein, U = 0; (V*U = 0 is enough)
i) the QC structure n has V*T° = 0.

b) If n =1 and the vertical space of nj is integrable than n) is a qc-Einstein structure.
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The Bianchi Identities

Ux,y,z{"?()C Y,Z,V) = g((VxT)(Y,2), V) = 9(T(Tx,v, 2), V)} =0

ox.v.2{ GUVXRNY,Z)V. W) + g(R(Txv, Z)V, W)} = 0

Theorem (w/ St. lvanoy, I. Minchev)

The divergences of the curvature tensors satisfy the system Bb = 0, where

3
-1 6 4n—1 o) 0
B=| -1 0 n+2 iy O |,
1 -3 4 0 —1

b= (V*T°, V*U, A, dScal, Ric(&,l;.) )"
and A = I1[&2, &3] + k[€3, &1] + h[&1, &2].

Note: Horizontal divergence V* P of a (0,2)-tensor field P is a (0,1)-tensor

4n

VP() ==Y (Ve.P)(as.),

a=1
where e, = 1,...,4nis an orthonormal basis of H.
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The Divergence Formula

Proposition

Let (M*"+3, 5, gn) be a compact closed manifold with a contact quaternionic structure and o a
horizontal 1-form, o € A' (H). Then we have

/M(V*U)U1/\nz/\fi3/\w12n =0,

where V*o = —(Vo)(éqa;€a) and{ea}a isan ONB frameonH,a=1,..., 4n.

[Ricol—1(X, Y) = (2n+2)T%(X,Y) = —(2n+2)h™ ' [Vah]jgym—1)(X, Y)
[Ricol3)(X, Y) = 2(2n+5)U(X,Y) = —(2n+5)h~'[Vdh—2h~"dh & dh]e (X, Y).

/h|[Ffico][,1] 2pAaw? = (2n+2) /([Rico][,ﬂ,wh]mm?"
M

- (2n+2)/M<v* [Ricol_1}, VA) n Aw?" = 0.
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Obata type Theorem

Theorem (w/ St. lvanov, I. Minchev)

Letn = fij be a conformal deformation of the standard qc-structure #j on the quaternionic sphere
S$4n+3. Suppose n has constant qc-scalar curvature and in addition
a) ifn>1
i) the vertical space of n) is integrable; or
ii) the function f is the real part of an anti-CRF function;
b) if n =1 the vertical space of n is integrable,

then up to a multiplicative constant ) is obtained from 7j by a conformal quaternionic contact
automorphism.
¢ € DiffM), ¢*ij = pVij, Ve e>(M:S0@3)),

* ~

n = ¢ 1.

Note: On a 3-Sasakian, df = diw + dou + dz3v  mod 7j implies [@df][S][o] =0.
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Obata type Theorem

Theorem (w/ St. lvanov, I. Minchev)

Letn = fij be a conformal deformation of the standard qc-structure #j on the quaternionic sphere
S$4n+3. Suppose n has constant qc-scalar curvature and in addition
a) ifn>1
i) the vertical space of n) is integrable; or
ii) the function f is the real part of an anti-CRF function;
b) if n =1 the vertical space of n is integrable,
then up to a multiplicative constant ) is obtained from 7j by a conformal quaternionic contact
automorphism.
¢ € DiffM), ¢*ij = pVij, Ve C>*(M:SO(3)),

* ~

n = ¢ 1.

Note: On a 3-Sasakian, df = diw + dou + dz3v  mod 7j implies [@df][S][o] = 0. Recall,
ux,y) = Ux,y) — @n—'] ?df][;;][o]..
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Seven Dimensional Case. Recall: 70 = Tglj

Theorem (w/ St. lvanov, I. Minchev)

Letfj = ﬁn, 7j standard quaternionic contact structure on the quaternionic unit sphere S”. Ifn has
constant qc-scalar curvature, then up to a multiplicative constant n is obtained from 7j by a
conformal quaternionic contact automorphism. Furthermore, \(S”) = T (ij) = 48 (4=)'/% and this
minimum value is achieved only by #j and its images under conformal quaternionic contact
automorphisms.
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Seven Dimensional Case. Recall: 70 = Tglj

Theorem (w/ St. lvanov, I. Minchev)

Letfj = #n, 7j standard quaternionic contact structure on the quaternionic unit sphere S”. If ) has
constant qc-scalar curvature, then up to a multiplicative constant n is obtained from 7j by a
conformal quaternionic contact automorphism. Furthermore, \(S”) = T (i) = 48 (47)'/5 and this
minimum value is achieved only by #j and its images under conformal quaternionic contact
automorphisms.

| A\

Theorem

Suppose (M7, m) is a quaternionic contact structure conformal to a 3-Sasakian structure (M7 , 7),

ii = g5 If Scaly = Scal; = 16n(n+2), f = § + h + ;h~2|Vh[? we have

dlv{ D + Z (dh(gs) Fs + 4dh(gs)lsAs — dh(gs) IsA )} = f|T°R + h(QV, V).

s=1

Here, Q is a positive definite matrix, V = (Dy, Do, D3, A1, A2, A3), Ai = Ii[§}, &l
A= A1 —+ A2 —+ A3.

Di(X) = —h~'TO " (X,Vh), Do(X) = —h~1T% "~ (X,Vh), D3y(X) = —h~'T° (X, Vh),

Fs(X) = —h~ ' T%X, sVh), s=1,2,3.
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Folland-Stein inequality In Dimension Seven

Theorem (Folland and Stein)
LetG = H x ImH and Q C G. There is S, = S»(G) > 0, such that, for u € C3°(Q2)

1/2

(/ﬂ |ul?” dH(g))1/2* <S (/Q IVu[? d,_,(g)) . o -5/
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Folland-Stein inequality In Dimension Seven

Theorem (Folland and Stein)
LetG = H x ImH and Q C G. There is S, = S»(G) > 0, such that, for u € C3°(Q2)

1/2

(/Q |ul?” dH(g))1/2* <S (/Q‘VUIZ d,_,(g)> . o -5/

Theorem (w/ St. lvanov, I. Minchev)

v

LetG = H x ImH. The best constant in the L? Folland-Stein embedding theorem is

151/10

S = ——.
2 72/52+/2

An extremal is given by the function (v = ...)

F(@) = v [(1+1aPP + 16w

Any other non-negative extremal is obtained from F by translations and dilations.
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More consequences of the Bianchi identities

Theorem (lvanov,V.)

The following tensors
@ R(X,Y,Z,V)—R(Z,V,X,Y)
@ 4R_(X,Y,Z,V) =
3R(X,Y,Z,V)—R(hX,hY,Z,V)—R(bX,LbY,Z,V)—R(LX,5Y,Z,V)
® R(&,X,Y,2)
® R(&,¢,X,Y)
are determined by the (horizontal!) torsion tensor, i.e., T°, U and Scal.

Corrolary

A QC manifold is locally isomorphic to the quaternionic Heisenberg group exactly when the
curvature of the Biquard connection restricted to H vanishes, R|,, = 0.
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Conformal Curvature. L-Schouten tensor. W9 - "Weyl” tensor.

@ "Schouten” tensor L(X, Y) = 1 TO(X, Y) + U(X,Y) + SZHSC;LZ a(X,Y).

@ Conformal curvature
3
W¥(X,Y,Z,V)=R(X,Y,Z,V)+ (g® L)(X,Y,Z, V) + Z ws ® IsL)(X,Y,Z,V)
s=1

— - Z wi(X,Y) [L(z VY = L(hZ, V) + L(Z, [ V) — L(/kz,/,-V)}
2 ik
3
-3 we(Z, V){L(x, IsY) — L(IsX, Y)] + l(trL)Z ws(X, YV)ws(Z, V),

s=1 s=1

where 3 ; ; 1) denotes the cyclic sum.
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Properties of the Conformal Curvature.

a) The [-1]-part w. r. t. the first two arguments of W9¢ vanishes,
W (X, Y, Z, V) = §[BW(X, ¥, 2, V) = $3, W(IsX, IsY, Z, V)| = 0.
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Properties of the Conformal Curvature.

a) The [-1]-part w. r. t. the first two arguments of W9¢ vanishes,
chﬂ(X Y,Z,V)=1 [3W‘7°(X, Y. Z,V)— 22:1 WL (IsX, IsY, Z, V)] =0.

) The [3]-part w. r. t. the first two arguments of W9° is determined by the torsion and the scalar

curvature
3
WE(X,Y,2Z,V) = [H(X, Y,Z,V)+ > R(sX, sY, Z, V)]
\ s=1
Z 2, V)[T0 X, IsY) — TO(IsX, Y)}
Scal g
32n(n+2) [(Q@ 9NX, Y, Z, V) + ;(Ws B ws)(X,Y,Z, V)]
3
+(@O U)X, Y,Z,V)+ D (ws® U)X, Y, Z,V),
s=1
where

WE(X,Y,Z,V) = [WQC(X Y,Z,V) +Z WP (X, IsY, Z, V)]

s=1
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Conformal Flatness and Ferrand-Obata Type Theorem

Theorem (w/ St. lvanov)

a) The gc conformal curvature W9 is invariant under quaternionic contact conformal
transformations, i.e., if
=¢Wn then  WI =¢WF,

for any smooth positive function ¢ and any SO(3)-matrix W.

b) A qc structure on a (4n+3)-dimensional smooth manifold is locally quaternionic contact
conformal to the standard flat qc structure on the quaternionic Heisenberg group G (H) if and only
if the gc conformal curvature vanishes, W9¢ = 0.

v
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Conformal Flatness and Ferrand-Obata Type Theorem
Theorem (w/ St. lvanov)

a) The gc conformal curvature W9 is invariant under quaternionic contact conformal
transformations, i.e., if
=¢Wn then  WI =¢WF,
for any smooth positive function ¢ and any SO(3)-matrix W.
b) A qc structure on a (4n+3)-dimensional smooth manifold is locally quaternionic contact

conformal to the standard flat qc structure on the quaternionic Heisenberg group G (H) if and only
if the gc conformal curvature vanishes, W9¢ = 0.

v
Corrolary

A qc manifold is locally quaternionic contact conformal to the quaternionic sphere S*"+3 if and
only if the qc conformal curvature vanishes, W3¢ = 0.
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Conformal Flatness and Ferrand-Obata Type Theorem

Theorem (w/ St. lvanov)

a) The qc conformal curvature WA¢ s invariant under quaternionic contact conformal
transformations, i.e., if
=¢Wn then  WI =¢WF,

for any smooth positive function ¢ and any SO(3)-matrix W.

b) A qc structure on a (4n+3)-dimensional smooth manifold is locally quaternionic contact
conformal to the standard flat qc structure on the quaternionic Heisenberg group G (H) if and only
if the gc conformal curvature vanishes, W9¢ = 0.

Corrolary

| \

A qc manifold is locally quaternionic contact conformal to the quaternionic sphere S*"+3 if and
only if the qc conformal curvature vanishes, W3¢ = 0.

A\

Theorem (w/ St. Ivanov)

Let (M,n) be a compact quaternionic contact manifold and G a connected Lie group of conformal
quaternionic contact automorphisms of M. If G is non-compact then M is qc conformally
equivalent to the unit sphere S in quaternionic space.

A,
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