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Characterization of compact complex ho-

mogeneous manifolds with vanishing first

Chern class

C-spaces(Wang) : Compact simply complex

homogeneous spaces

Such spaces are investigated first by Wang

(1954):

Theorem 1 If G is a compact semi-simple Lie

group, and H is a closed connected subgroup

whose semi-simple part coincides with the semisim-

ple part of the centralizer of a toral subgroup

of G, such that the coset space G/H is even-

dimensional. Then G/H has a homogeneous

complex structure and each C-space is home-

omorphic to such coset.

QUESTION: Which of the C-spaces have van-

ishing first Chern class?
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Description of the invariant complex struc-

tures

Let g and h be the (complexified) Lie alge-

bras of G and H. Let t is a Cartan subalgebra

(maximal toral subalgebra) in g.

Now the above mentioned result of Wang pro-

vides hss ⊂ h ⊂ j, where j is a parabolic sub-

algebra, t ⊂ j and jss = hss. Here superscript

”ss” means the semisimple part.

In particular

h = a + hss

for a commutative subalgebra a of the Cartan

subalgebra t. The parabolic algebra j is equal

to the normalizer of h in g.

Let J ⊃ H is the subgroup of G corresponding

to j.
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The space G/J is a generalized flag manifold

(or rational homogeneous space) and there is

a fibration called the Tits fibration G/H → G/J

with fibre a complex torus.

Now every complex structure on the flag man-

ifold is determined by the choice of a system

of simple roots Π which defines an ordering of

the system of roots and a subset Π0 ⊂ Π which

corresponds to j.

This correspondence determines the second co-

homology and the first Chern class of G/H.

In general jss is determined by the span of all

roots in R which are positive with respect to

Π0. Then the compliment Π−Π0 = Π′ provides

a basis for the center ζ of j and there is an

identification spanZ(Π′) = H2(G/J,Z).
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The identification is:

ξ →
i

2π
dξ

where ξ is considered as a left invariant 1-form

on G (in fact on Gc but we need it on G) and

dξ is ad(j)-invariant, hence defines a 2-form

on G/J. This form is obviously closed and in

fact defines non-zero element in H2(G/J,Z).

Moreover every class in H2(G/J,Z) has unique

representative of this form.

Now we are interested in the first Chern class

of G/H. It is determined by the so-called Koszul

form:

σG/H(X) = Trg
h
(ad(JX) − Jad(X)), X ∈ g

where J is extended as 0 on h. According to

Alekseevsky-Perelomov, σG/H = 2i(σG − σH),

where σG is the sum of positive roots in G and

σH is the sum of positive roots in G which are

also in h. Then one has σG/J = σG/H since the

semisimple parts of j and h coincide.
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As is proved by Koszul, the form dσ descends

to G/H and represents its first Chern class.

Then the key point is that dσ defines the zero

element in H2(G/H,Z) iff σ descends to G/H

itself. As it is proved by Tits σ is a sum with

positive integer coefficients of elements of Π′.

Then we have:

Theorem 2 The first Chern class of G/H van-

ishes iff

σ|a = 0

i.e. the restriction of σ to a vanishes.

Note that dσ descends to G/J also and deter-

mines its first Chern class, which is positive.
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Examples:

We begin with examples which include the fol-

lowing two extreme cases:

A) a = 0 i.e. h is semisimple itself.

and

B) H = U(1), where U(1) is appropriately em-

bedded in odd-dimensional G,

For the case A) we start with an example from

the Aℓ-series. Consider

M = SU(n)/SU(n1) × SU(n2) × ... × SU(nk),

k − odd, ni > 1

Here SU(n1)×...SU(nk) is diagonally embedded

as a matrix group in SU(n) and n1 + n2 =

... + nk = n.
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The Tits fibration is M → SU(n)/S(U(n1) ×

U(n2)... × U(nk)) with fiber T k−1. The exis-

tence of complex structure follows by Theorem

1. The vanishing of the Chern class follows by

Theorem 2. These clearly could be generalized

to the case

n1 + n2... + nk ≤ n, ni > 1

where n − (n1 + n2 + ... + nk) + k is odd.

Examples for the other classical compact Lie

groups are:

M = SO(2n)
SU(n1)×...×SU(n2k)×SO(2l)

,

n1 + ... + n2k + l = n

M = SO(2n)
SU(n1)×...×SU(n2k)×SU(n2k+1)

,

n1 + ... + n2k+1 = n

M = SO(2n+1)
SU(n1)×...×SU(n2k)×SO(2l+1)

,

n1 + ... + n2k + l = n

M = Sp(n)
SU(n1)×...SU(n2k)×Sp(l)

,

n1 + ... + n2k + l = n

with at least one ni 6= 0.
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The other example of case B) is G/U(1), but

with U(1) appropriately embedded. We con-

sider again G = SU(n). The Tits fibration

in this case is SU(n)/U(1) → F1,1...1 where

F1,1...,1 = SU(n)/S(U(1) × ... × U(1)) is the

standard flag manifold. In this case σF =

σSU(n)−σS(U(1)×...×U(1)) = σSU(n), since S(U(1)×

... × U(1)) is abelian and σS(U(1)×...×U(1)) = 0.

To describe the sum of positive roots we need

some notations. Let Mi be the matrix with i-th

diagonal element equal to 1 and all others be-

ing 0. Then the set of all roots is ei,j = ei− ej,

where ei are the duals of Mi. A set of sim-

ple roots is ei,i+1 which also determines the

positive roots ei,j, i < j. Then the sum of all

positive roots is:

Σi<jei,j = Σn−1
k=1k(n−k)ek,k+1 = Σn

k=1(n−2k+1)ek
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Proposition 1 The space SU(n)/U(1), n−even

is a complex homogeneous manifold with van-

ishing first Chern class iff U(1) is embedded as

a set of diagonal matrices:

A = diag(e2πθ1t, e2πθ2t, ..., e2πθnt)

with the property

Σn−1
k=1(n − 2k + 1)θk = 0

Next we consider the general case of factors of

SU(n). In this case the Tits fibration is of the

form:

SU(n)
SU(n1)×...×SU(nk)×T l

↓
SU(n)

SU(n1)×...×SU(nk)×Tm

with n1 + ... + nk + m − k = n − 1 and l < m.
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At this point we notice that an invariant com-

plex structure on the flag manifold SU(n)/SU(n1)×

... × SU(nk) × Tm is not unique but depends

on the so called painted Dynkin diagram. In

general painted diagrams are used to describe

a flag manifolds and are popular for Grass-

manians. For a general flag manifold painted

Dynkin diagram is obtained by blackenning the

vertices which correspond to Π′. More details

are given in the paper

D.Alekseevski, A.Perelomov Invariant Kähler-

Einstein metrics on compact homogeneous spaces,

Funct.Anal.Appl.(3) 20 (1986)1–16.

We choose the flag manifold, which is the base

of the Tits fibration, to be SU(11)/SU(4) ×

SU(3) × SU(2) × T4 = SU(11)/S(T2 × U(4) ×

U(3)×U(2)). It corresponds to a painted Dynkin

diagram:

•−−•−−◦−−◦−−◦−−•−−◦−−◦−−•−−◦
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Note that the diagram also determines the com-

plex structure on the flag manifold. We need

the Koszul form σ of this flag manifold. It is

described by Alekseevsky and Perelomov:

σ = (2 + b1)α1 + (2 + b2)α2 + ... + (2 + bm)αm

where αi are the fundamental weights corre-

sponding to the roots with black circles , de-

fined as

(αk, αj)

(αj, αj)
= δi

j

Moreover the numbers bi are equal the number

of white circles of the Dynkin diagram, which

are connected with the black circle correspond-

ing to the root αi by a series of white circles.
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In particular in the above diagram we have:

σ = (2 + b1)e1,2 + (2 + b2)e2,3 + (2 + b3)e6,7

+(2 + b4)e9,10 = 2e1,2 + 5e2,3 + 7e6.7 + 5e9,10

Now to obtain explicit expression of the above

element σ in terms of ei,i+1 we need a descrip-

tion of the fundamental weights.

Since the product (, ) is defined from the Killing

form on g then ei are orthonormal matrices.

Then one can check directly that the follow-

ing elements satisfy the condition (1)

Lk = e1 + ... + ek − k/n(e1 + ... + en) = ek,k+1
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So in our case we have

σ = 2e1 − 2/11(e1 + ... + e11) + 5(e1 + e2)

−5.2/11(e1 + ... + e11) + 7(e1 + ... + e6)

−7.6/11(e1 + ... + e11) + 5(e1 + ...e9)

−5.9/11(e1 + ... + e11)

= 10e1 + 8e2 + 3(e3 + e4 + e5 + e6

−4(e7 + ... + e9) − 9(e10 + e11)

The dimension count gives dimSU(11)/S(T2×

U(4) × U(3) × U(2)) = 90 and there could be

2 or 4 - dimensional fibers for a Tits fibration

with this base. The 4-dimensional fiber case

leads to an example of the previous type be-

cause the subgroup H will be semisimple.
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So we consider the case of two dimensional

fiber. At Lie-algebra level we have to add

appropriate 2-dimensional space a of diagonal

matrices to the Lie algebra jss. It has to be of

the form

a = diag(x1, x2, x3, x3, x3, x3, x4, x4, x4, x5, x5)

and should obey the following conditions:

x1 + x2 + 4x3 + 3x4 + 2x5 = 0
10x1 + 8x2 + 12x3 − 12x4 − 18x5 = 0

The first equation comes form the requirement

that the matrices in a are trace-free. The sec-

ond follows from Theorem 2 and the form of

σ above. Now we can fix two linearly indepen-

dent solutions (v1, v2, v3, v4, v5) and (w1, w2, w3,

w4, w5) with integer entries of the equations

above. Then the Lie algebra h = jss + a should

be:
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h = diag(v1t + ws, v2t + w2s, (v3t + w3s)A,

(v4t + w4s)B, (v5t + w5s)C)

where A, B, C are trace-free skew-adjoint ma-

trices of order 4,3 and 2 respectively and t, s are

parameters. Then at the end we obtain that

SU(11)/H is a complex homogeneous manifold

with vanishing first Chern class, if H is of the

form:

H = diag(e2iπ(v1t+w1s), e2iπ(v2t+w2s),

e2iπ(v3t+w3s)A, e2iπ(v4t+w4s)B, e2iπ(v2t+w2s)C)

where A ∈ SU(4), B ∈ SU(3), C ∈ SU(2). More-

over any such manifold with a stationary sub-

group H containing strictly Id2×SU(4)×SU(3)×

SU(2)) is of this form.
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CYT structures and homogeneous spaces

Let (M, J, g) be Hermitian manifold and F(X, Y ) =

g(JX, Y ) is the Kähler form. Using the nota-

tions of Gauduchon we have a one-parameter

family of Hermitian connections ∇t with the

property

∇ts −∇us = i
t − u

2
δF ⊗ s

for any section s of the anti-canonical bundle

K−1 where δ is the co-differential.

Let Rt be the curvature of ∇t and ρt(X, Y ) =

Σg(Rt(X, Y )Ei, JEi) be the corresponding trace.

Then iρt is the curvature of K−1 and from the

above relation we obtain:

ρt = ρu +
t − u

2
dδF

Now ∇1 is the Chern connection, ∇−1 is the

Bismut connection. Denote by ρ and ρB the

Ricci forms of the Chern and Bismut connec-

tions respectively. We call a metric CYT if

ρB = 0.
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Theorem 3 Every simply-connected compact

complex homogeneous space with vanishing first

Chern class admits a CYT structure.

Another type of compact complex homoge-

neous manifolds with vanishing first Chern class

are the complex parallelizable manifolds - i.e.

the manifolds with holomorphic parallelization

of its (holomorphic) tangent bundle. Accord-

ing to a well known theorem these are of the

form G/Γ, where G is a complex Lie group and

Γ is a cocompact lattice. For the Hermitian

geometry of such manifolds there is the fol-

lowing result by Abbena and Grassi (1986):

Theorem 4 For a compact complex paralleliz-

able manifold any left invariant metric is a bal-

anced metric.

18



From this theorem we obtain:

Theorem 5 For a compact complex parallelilz-

able manifold any left invariant metric is a CYT

metric. Moreover all Ricci forms of the canon-

ical Hermitian connections vanish.

Moreover D.Guan proved the following in 2002:

Theorem 6 Every compact complex homoge-

neous space with invariant volume form is a

principal homogeneous complex torus bundle

over the product of a projective rational homo-

geneous space and a parallelizable manifold.

At this point we have:

Conjecture 1 Every compact complex homo-

geneous space with invariant volume form ad-

mits a CYT structure
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Relation to the Strominger’s equations in

heterotic string theory

In 1986 A.Strominger analyzed heterotic su-

perstring background with spacetime supersym-

metry. His model is based on Hermitian man-

ifolds which are generalization of the Calabi-

Yau manifolds. In terms of Hermitian geom-

etry it is about conformally balanced complex

3-manifold with holomorphic (3,0)-form with

constant norm and an anomaly cancellation

condition. The manifold is endowed with an

auxiliary semistable bundle with Hermitian-Einstein

connection A with curvature FA and the anomaly

cancellation condition is:

dH = 2i∂∂F =
α′

4
[tr(R ∧ R) − tr(FA ∧ FA)]

The first solutions on non-Kähler manifolds of

this system were constructed only recently by

J.Fu and S.T.Yau. We consider here solutions

of the Strominger’s system with FA = 0 in the

anomaly cancellation condition.
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We begin with an example of nilmanifold which

is not complex homogeneous, but satisfies the

conditions of the Strominger’s system with pos-

itive α′.

Let e1, Je1, e2, Je2, e3, Je3 be a unitary co-basis

for a complex structure J and Hermitian met-

ric g, so that the Kähler form is F = 2(e1 ∧

Je1 + e2 ∧ Je2 + e3 ∧ Je3). Consider the Lie

algebra defined via d(Je3) = e1 ∧ Je1 − e2 ∧ Je2

and all other 1-forms of the basis are closed.

It defines a Lie group which is the product

H5 × R1 of the 5-dimensional real Heisenberg

group and a line. This admits a compact quo-

tient M such that g and J descend to M .

Then the structure J is integrable, since d(e3+

iJe3) ∈ Λ(1,1) so d(Λ(1,0)) ∈ Λ(1,1) and bal-

anced since d(F2) = 0. Moreover ddcF =

2ddc(e3∧Je3) = 2d(J(−e3∧dJe3)) = −2d(Je3∧

dJe3) = −2(dJe3)2 since JdJe3 = dJe3.
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Now we take a skew-symmetric connection ma-

trix which defines a metric connection:

ω =





















0 Je3 0 0 0 0

−Je3 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





















.

The curvature of this connection is given by

the matrix

R = dω + ω ∧ ω =





















0 dJe3 0 0 0 0

−dJe3 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





















Then we obtain tr(R∧R) = −(dJe3)2 = +ddcF .

Moreover by changing ω to aω and choosing an

anti-selfdual abelian instanton A on the base 4-

torus, we can find a solution with non-vanishing

field FA.
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Complex parallelizable manifolds and Stro-

minger’s equations

Let g be a complex 3-dimensional Lie alge-

bra with a basis of left-invariant holomorphic

(1,0)-forms α, β, γ. Let G be the simply con-

nected complex Lie group with algera g and

consider the following examples of compact

complex parallelizable manifolds G/Γ where Γ

is a cocompact lattice (these exhaust the 3-

dimensional compact complex parallelizable man-

ifolds):

1. Complex Iwasawa manifold. It is determined

by the complex Heisenberg algebra:

dα = β ∧ γ, dβ = dγ = 0

2. A solvmanifold determined by

dα = α ∧ γ, dβ = −β ∧ γ, dγ = 0
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3. The space SL(2, C)/Γ determined by:

dα = β ∧ γ, dβ = γ ∧ α, dγ = −α ∧ β

In each example we consider the metric given

by g = αα + ββ + γγ. Then the Kähler form is

F = i(α ∧ α + β ∧ β + γ ∧ γ) and it is easy to

see that dF2 = 0, so the metric is balanced as

follows from the result by Abbena and Grassi.

Let αr, βr, γr be the real parts of α, β, γ and the

imaginery parts are Jαr, Jβr, Jγr accordingly.

Then

ddcF = 2(dαr ∧ dαr + dJαr ∧ dJαr

+dβr∧dβr+dJβr∧dJβr+dγr∧dγr+dJγr∧dJγr)
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Then we can check easily that for all 3 exam-

ples above

dαr ∧ dαr = dJαr ∧ dJαr, dβr ∧ dβr

= dJβr ∧ dJβr, dγr ∧ dγr = dJγr ∧ dJγr

Now we choose a connection on the tangent

bundle given by the matrix of 1-forms for each

case as follows:

Case 1.

ω =





















0 αr 0 0 0 0
−αr 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




















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Case 2.

ω =





















0 αr 0 0 0 0
−αr 0 0 0 0 0
0 0 0 βr 0 0
0 0 −βr 0 0
0 0 0 0 0
0 0 0 0 0 0





















.

Case 3.

ω =





















0 αr 0 0 0 0
−αr 0 0 0 0 0
0 0 0 βr 0 0
0 0 −βr 0 0 0
0 0 0 0 0 γr

0 0 0 0 −γr 0





















These are skew-symmetric matrices which in

the fixed unitary bases define metric connec-

tions.
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Then it is easy to calculate R = dω+ω∧ω and

we see for example that in the first case:

R∧R =





















−dαr ∧ dαr 0 0 0 0 0
0 −dαr ∧ dαr 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





















so tr(R ∧ R) = −2(dαr ∧ dαr) Since in case

1, dβr ∧ dβr = dγr ∧ dγr = 0, then ddcF =

−2tr(R∧R) for the Iwasawa manifold. Similarly

tr(R ∧ R) = −[2(dαr)2 + 2(dβr)2] = −1/2ddcF

in the second case and tr(R∧R) = −2(dαr)2−

2(dβr)2 − 2(dγ)2 = −1/2ddcF in the third.

Note that if instead of the above skew-symmetric

matrices for ω we choose a symmetric ones

with the same entries above the diagonal, then

we have a non-metric connections ω which sat-

isfy ddcF = 2tr(R ∧ R).
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