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Characterization of compact complex ho-
mogeneous manifolds with vanishing first
Chern class

C-spaces(Wang) : Compact simply complex
homogeneous spaces

Such spaces are investigated first by Wang
(1954):

Theorem 1 If G is a compact semi-simple Lie
group, and H is a closed connected subgroup
whose semi-simple part coincides with the semisim-
ple part of the centralizer of a toral subgroup

of G, such that the coset space G/H is even-
dimensional. Then G/H has a homogeneous
complex structure and each C-space is home-
omorphic to such coset.

QUESTION: Which of the C-spaces have van-
ishing first Chern class?



Description of the invariant complex struc-
tures

Let g and b be the (complexified) Lie alge-
bras of G and H. Let t is a Cartan subalgebra
(maximal toral subalgebra) in g.

Now the above mentioned result of Wang pro-
vides h%% C h C j, where j is a parabolic sub-
algebra, t C j) and j3°® = h°°. Here superscript
"ss'" means the semisimple part.

In particular
h=a+p>

for a commutative subalgebra a of the Cartan
subalgebra t. The parabolic algebra j is equal
to the normalizer of b in g.

Let J D H is the subgroup of G corresponding
to ).



The space G/J is a generalized flag manifold
(or rational homogeneous space) and there is
a fibration called the Tits fibration G/H — G/J
with fibre a complex torus.

Now every complex structure on the flag man-
ifold is determined by the choice of a system
of simple roots 1 which defines an ordering of
the system of roots and a subset Ny C I which
corresponds to j.

T his correspondence determines the second co-
homology and the first Chern class of G/H.

In general j°° is determined by the span of all
roots in R which are positive with respect to
Mg. Then the compliment M—Mg = M’ provides
a basis for the center ¢ of j and there is an
identification spany (M) = H2(G/J,Z).



The identification is:
1
§— de
where £ is considered as a left invariant 1-form
on G (in fact on G°¢ but we need it on G) and
d€ is ad(j)-invariant, hence defines a 2-form
on G/J. This form is obviously closed and in
fact defines non-zero element in H2(G/J,Z).

Moreover every class in H2(G/J,Z) has unique
representative of this form.

Now we are interested in the first Chern class
of G/H. It is determined by the so-called Koszul
form:

O'G/H(X) = TT%(ad(JX) —Jad(X)), X € g

where J is extended as 0 on §. According to
Alekseevsky-Perelomov, oG/H = 2i(ocq — og),
where o4 is the sum of positive roots in G and
op IS the sum of positive roots in G which are
also in h. Then one has g, ; = oG,y since the
semisimple parts of j and § coincide.



As is proved by Koszul, the form do descends
to G/H and represents its first Chern class.
Then the key point is that do defines the zero
element in H2(G/H,Z) iff ¢ descends to G/H
itself. As it is proved by Tits o is a sum with
positive integer coefficients of elements of IM’.
Then we have:

Theorem 2 The first Chern class of G/H van-
ishes iff

O'|a:O

i.e. the restriction of o to a vanishes.

Note that do descends to G/J also and deter-
mines its first Chern class, which is positive.



Examples:

We begin with examples which include the fol-
lowing two extreme cases:

A) a =0 i.e. his semisimple itself.
and

B) H=U(1), where U(1) is appropriately em-
bedded in odd-dimensional G,

For the case A) we start with an example from
the Ajy-series. Consider

M = SU(n)/SU(n1) x SU(ns) x ... x SU(ny),

k —odd,n; > 1

Here SU(nq1)x...SU(ny) is diagonally embedded
as a matrix group in SU(n) and nqy + npy =
e M = N



The Tits fibration is M — SU(n)/S(U(ny) x
U(no)... x U(ng)) with fiber TF=1 The exis-
tence of complex structure follows by T heorem
1. The vanishing of the Chern class follows by
Theorem 2. These clearly could be generalized
to the case

niy+no...+np <n,n; >1
where n — (n] +no + ... +n;) + k is odd.

Examples for the other classical compact Lie
groups are:

M = SO(2n)
— SU(nq)x...xSU(nop)xS0O(21)°

nl—l——l—an—l—l:n

M = SO(2n)
SU(nl)X...XSU(RQk)XSU(n2k+1)’
niq —|— —|— an_H —n

M = SO(2n+1)

SU(nl)X...XSU(RQk)XSO(2l+1)’

ny+..+nop+1l=n

M = Sp(n)
SU(nl)X...SU(TLQk)XSp(l)’
ny+..+nop+l=n

with at least one n; = 0.




The other example of case B) is G/U(1), but
with U(1) appropriately embedded. We con-
sider again G = SU(n). The Tits fibration
in this case is SU(n)/U(1) — Fy1..1 where
F171_._71 = SU(TL)/S(U(].) X ..o X U(l)) iIs the
standard flag manifold. In this case op =
TSU(n) ~TS(U(1)x...xU(1)) = 95U (n) SiNC€ S(U(1)x
oo X U(l)) IS abelian and OS(U(1)x...xU(1)) — 0.
To describe the sum of positive roots we need
some notations. Let M; be the matrix with i-th
diagonal element equal to 1 and all others be-
ing 0. Then the set of all roots is e; ; = e; — ¢,
where e; are the duals of M;. A set of sim-
ple roots is e; ;41 which also determines the
positive roots e; j,2 < j. Then the sum of all
positive roots is:

Zi<je7l,j — ZZ;%k(n_k)ek,k—l—l — Zzzl(n—Qk—l—l)ek



Proposition 1 The space SU(n)/U(1),n—even
is a complex homogeneous manifold with van-
ishing first Chern class iff U(1) is embedded as
a set of diagonal matrices:

A = diag(ezﬂglt, 627T92t, - 82779nt>
with the property

S Y (n—2k+1)0, =0

Next we consider the general case of factors of
SU(n). In this case the Tits fibration is of the

form:
SU(n)
SU(n1)x...xSU(ng)xT"

!
SU(n)
SU(nq)x...xSU(ng)xT™

withni+...+n,+m—-—k=n-—1and [l <m.
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At this point we notice that an invariant com-

plex structure on the flag manifold SU(n)/SU(n1) %

.. X SU(ng) x T™ is not unique but depends
on the so called painted Dynkin diagram. In
general painted diagrams are used to describe
a flag manifolds and are popular for Grass-
manians. For a general flag manifold painted
Dynkin diagram is obtained by blackenning the
vertices which correspond to M’. More details
are given in the paper

D.Alekseevski, A.Perelomov Invariant Kahler-

Einstein metrics on compact homogeneous spaces,

Funct.Anal.Appl.(3) 20 (1986)1—-16.

We choose the flag manifold, which is the base
of the Tits fibration, to be SU(11)/SU(4) x
SU(3) x SU(2) x T* = SU(11)/S(T? x U(4) x
U(3)xU(2)). It corresponds to a painted Dynkin
diagram:

e——— —0——0——0——@——0——0— —@— —0
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Note that the diagram also determines the com-
plex structure on the flag manifold. We need
the Koszul form o of this flag manifold. It is
described by Alekseevsky and Perelomov:

oc=Q+bpar+2+bx)az+ ...+ (2+bn)am

where a; are the fundamental weights corre-
sponding to the roots with black circles , de-
fined as

(ks @) _

(aj, o)
Moreover the numbers b; are equal the number
of white circles of the Dynkin diagram, which
are connected with the black circle correspond-
ing to the root «; by a series of white circles.

9
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In particular in the above diagram we have:

c=(2+b)eis+ (2+b)eaz+ (2+ b3)es7

+(2 4+ bs)eg 10 = 215 + 5e53 + 7eg.7 + 5€9.10

Now to obtain explicit expression of the above
element o in terms of e; ;41 we need a descrip-
tion of the fundamental weights.

Since the product (,) is defined from the Killing
form on g then e; are orthonormal matrices.
Then one can check directly that the follow-
ing elements satisfy the condition (1)

Lk:e]_—|—...—|—€k—k/n(€1—|—...—|—€n) :m
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SO in our case we have

c = 2e1—2/11(e; 4+ ...+ e11) +5(e1 + e3)
_5.2/11(eq + ... +e11) + 7(e1 + ... + eg)
—7.6/11(e1 + ... +e11) +5(e1 + ...eq)
—5.9/11(e1 + ... +e11)

= 10eq + 8e> + 3(e3 4+ e4 + e5 + e
—4(e7 + ... + e9) — 9(e10 + €11)

The dimension count gives dimSU(11)/S(T? x
U(4) xU(3) xU(2)) = 90 and there could be
2 or 4 - dimensional fibers for a Tits fibration
with this base. The 4-dimensional fiber case
leads to an example of the previous type be-
cause the subgroup H will be semisimple.
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So we consider the case of two dimensional
fiber. At Lie-algebra level we have to add
appropriate 2-dimensional space a of diagonal
matrices to the Lie algebra j%%. It has to be of
the form

a = diag(ml, L2, L3, X3, X3, L3, L4, T4, X4,T5, CU5)
and should obey the following conditions:

x1 + x> + 4x3 + 34 + 275 0
101 + 8xo + 1223 — 1224 — 1825 = O
The first equation comes form the requirement
that the matrices in a are trace-free. The sec-
ond follows from Theorem 2 and the form of
o above. Now we can fix two linearly indepen-
dent solutions (v1,vo,v3,va,vs) and (w1, wo, w3,
wg,ws) With integer entries of the equations
above. Then the Lie algebra h = j°° 4 a should

be:
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h = diag(vit + ws, vot + wos, (vt + w3s) A,

(vat + was)B, (vst + wss)C)

where A, B,C' are trace-free skew-adjoint ma-
trices of order 4,3 and 2 respectively and ¢, s are
parameters. Then at the end we obtain that
SU(11)/H is a complex homogeneous manifold
with vanishing first Chern class, if H is of the
form:

H — diag(€2i7r(vlt—|—wls)’ 627j7r(v2t—|—w23),
627j7r(v3t—|—w3s)A, €2i7r(v4t—|—w4s)37 eQiﬁ(vzt—I—wzs)C)

where A € SU(4),B € SU(3),C € SU(2). More-
over any such manifold with a stationary sub-
group H containing strictly IdoxSU(4)xSU(3) x
SU(2)) is of this form.
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CYT structures and homogeneous spaces

Let (M, J,g) be Hermitian manifold and FI(X,Y) =
g(JX,Y) is the Kahler form. Using the nota-
tions of Gauduchon we have a one-parameter
family of Hermitian connections V¢! with the
property

t—u

Vis — Vis =3 SF ® s

for any section s of the anti-canonical bundle
K1 where § is the co-differential.

Let R! be the curvature of V! and p!(X,Y) =
>g(RYX,Y)E;, JE;) be the corresponding trace.
Then ipt is the curvature of K—1 and from the
above relation we obtain:

t—u
pt=p" +

Now V1! is the Chern connection, V1 is the
Bismut connection. Denote by p and pB the
Ricci forms of the Chern and Bismut connec-

tions respectively. We call a metric CYT if
B _
p pr—

doF
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Theorem 3 Every simply-connected compact
complex homogeneous space with vanishing first
Chern class admits a CY'T structure.

Another type of compact complex homoge-
neous manifolds with vanishing first Chern class
are the complex parallelizable manifolds - i.e.
the manifolds with holomorphic parallelization
of its (holomorphic) tangent bundle. Accord-
ing to a well known theorem these are of the
form G/I", where G is a complex Lie group and
[ is a cocompact lattice. For the Hermitian
geometry of such manifolds there is the fol-
lowing result by Abbena and Grassi (1986):

Theorem 4 For a compact complex paralleliz-
able manifold any left invariant metric is a bal-
anced metric.
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From this theorem we obtain:

Theorem 5 Foracompact complex parallelilz-
able manifold any left invariant metricisa CYT
metric. Moreover all Ricci forms of the canon-
ical Hermitian connections vanish.

Moreover D.Guan proved the following in 2002:

Theorem 6 Every compact complex homoge-
neous space with invariant volume form is a
principal homogeneous complex torus bundle
over the product of a projective rational homo-
geneous space and a parallelizable manifold.

At this point we have:

Conjecture 1 Every compact complex homo-
geneous space with invariant volume form ad-
mits a CY'T structure
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Relation to the Strominger’s equations in
heterotic string theory

In 1986 A.Strominger analyzed heterotic su-
perstring background with spacetime supersym-
metry. His model is based on Hermitian man-
ifolds which are generalization of the Calabi-
Yau manifolds. In terms of Hermitian geom-
etry it is about conformally balanced complex
3-manifold with holomorphic (3,0)-form with
constant norm and an anomaly cancellation
condition. The manifold is endowed with an
auxiliary semistable bundle with Hermitian-Einstein
connection A with curvature F'y and the anomaly
cancellation condition is:

/
dH = 2i00F = %[tr(R AR) —tr(Fa A F4)]

T he first solutions on non-Kahler manifolds of
this system were constructed only recently by
J.Fu and S. T.Yau. We consider here solutions
of the Strominger’s system with F4, = 0 in the
anomaly cancellation condition.
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We begin with an example of nilmanifold which
IS not complex homogeneous, but satisfies the
conditions of the Strominger’s system with pos-
itive o.

Let el, Jel e2, Je?, e3, Je3 be a unitary co-basis
for a complex structure J and Hermitian met-
ric g, so that the Kahler form is F = 2(el A
Jel 4 e2 A Je? + e3 A Je3). Consider the Lie
algebra defined via d(Je3) = el A Jel —e2 A Je?
and all other 1-forms of the basis are closed.
It defines a Lie group which is the product
H® x Rl of the 5-dimensional real Heisenberg
group and a line. This admits a compact quo-
tient M such that g and J descend to M.
Then the structure J is integrable, since d(e3+
iJe3) € ALL so g(A(L0)) e A(LL) and bal-
anced since d(F?) = 0. Moreover dd°F =
2dd¢(e3AJe3) = 2d(J(—e3AdJe3)) = —2d(Je3 A
dJe3) = —2(dJe3)? since JdJe3 = dJe3.
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Now we take a skew-symmetric connection ma-
trix which defines a metric connection:

[0 Je3 0 0 0 0)

—Je3 0

0

0

0

\ 0

The curvature of this connection is given by
the matrix

OO0 Oo
OO0 Oo
OO0 Oo
OO0 Oo

O
O
O
O

(0 dJe> 00 0 0)
—dJe3 0 0 000

_ B 0 O 0000
R=dotwhw= 0 O 0000
0 O 0000

\ 0 0 0000/

Then we obtain tr(RAR) = —(dJe3)2 = +dd°F.
Moreover by changing w to aw and choosing an
anti-selfdual abelian instanton A on the base 4-
torus, we can find a solution with non-vanishing
field Fy.
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Complex parallelizable manifolds and Stro-
minger’s equations

Let g be a complex 3-dimensional Lie alge-
bra with a basis of left-invariant holomorphic
(1,0)-forms o, 3,v. Let G be the simply con-
nected complex Lie group with algera g and
consider the following examples of compact
complex parallelizable manifolds G/I" where I
is a cocompact lattice (these exhaust the 3-
dimensional compact complex parallelizable man-
ifolds):

1. Complex Iwasawa manifold. It is determined
by the complex Heisenberg algebra:

doao= [ N~vy,dB =dy=20

2. A solvmanifold determined by

do =aAN~v,dB=—-BANvy,dy=0

23



3. The space SL(2,C)/I determined by:

do =[P Nvy,dB=~vANa,dy=—aAf

In each example we consider the metric given
by ¢ = aa + B8+ ~~F. Then the Kahler form is
F=ilaNa+BAB+~vyA%) and it is easy to
see that dF? = 0, so the metric is balanced as
follows from the result by Abbena and Grassi.

Let ", 8",~" be the real parts of «, 3, and the
imaginery parts are Ja', J3", Jy" accordingly.
Then

dd°F = 2(da” ANda" 4+ dJa" ANdJa”

+dB"ANdB"+dIB" AT B +dy" Ady"+dIN AdTAT)
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Then we can check easily that for all 3 exam-
ples above

do" Nda" = dJa" ANdJa",dB" A dB"
=dJB" NdJB",dy" Ndy" = dJy" AdIy"
Now we choose a connection on the tangent

bundle given by the matrix of 1-forms for each
case as follows:

Case 1.

(0 o” 000 0)
—a” 0 00 00
,_|l0o o0 0000
0 0 0000
0 0 0000
\0 0 000 0/
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Case 2.

(0 " 0 0 0 0)
—a™ 0 0 0 00
|0 0o 0 B 00
0 0 -0 0
0 0 O 0 0
\0 0 0 0 00/
Case 3.
(0 a0 0 0 0 )
—a” 0 0 0 0 O
|0 0o o p 0 O
0O 0 -p~0 0 O
0O 0 0 0 0 A
\0 0 0 0 —4" 0 |

These are skew-symmetric matrices which in
the fixed unitary bases define metric connec-

tions.
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Then it is easy to calculate R = dw +w A w and
we see for example that in the first case:

([ —da” Ada” 0 0 0 0 0)
0 —do”" Ada” 0 0 0 O
B 0 0 0 00O
hnk= 0 0 0000
0 0 0 00O

\ 0 0 000 0

so tr(R AN R) = —2(da" A da™) Since in case

1, dB" NdB" = dy" A dy" = 0, then dd‘F =
—2tr(RAR) for the Iwasawa manifold. Similarly
tr(RA R) = —[2(da”™)2 + 2(dB")?] = —1/2dd°F
in the second case and tr(RAR) = —2(da")? —
2(dB7)? — 2(dy)? = —1/2dd°F in the third.

Note that if instead of the above skew-symmetric
matrices for w we choose a symmetric ones
with the same entries above the diagonal, then
we have a non-metric connections w which sat-
isfy dd°F = 2tr(R A R).
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