Modulbeschreibung für Vertiefungsmodule

des Wahlpflichtbereiches

 

 

 

Titel des Moduls

Operatoralgebren und K-theorie II

 

in englischer Sprache

 

Operator algebras and K-theory

 

R

X

A

 

 

 

Vorlesung

Übung

 

Umfang

 

2

2

 

Inhalt

 

 

 

 

 

Benötigte Resultate über Operatoralgebren und Erweiterungen, Definition und einfache Aussagen über K-Gruppen, K-Theorie als Bott-Funktor, Bott-Periodensatz, 6-Term-exakte Folge für Erweiterungen, Verschränkte Produkte und Freie Produkte.

Ext-Gruppen,  Hilbert-Module, Kasparov-Hilbert-Bi-Module, Kasparov‘s KK-Gruppen, Stetigkeitsaussagen für KK.  Ext und KK als bivariante Bott-Funktoren. Ausblick auf Anwendungen (Index-Sätze, Novikov-Vermutung, Klassifikationen von C*-Algebren).

 

Voraussetzungen

 

Module 1, 2, 5, 6, 7, 15, 19  (d.h. Grundkenntnisse in Analysis, Funktionalanalysis, Algebra  und Topologie)

 

Regelsemester

 

6.-8. Semester

 

Abschluss

 

Prüfung oder Leistungsnachweis

 

Prüfungszulassungsvor-aussetzung

Teilnahme an Vorlesung

 

Studienpunkte

 

5 – bei Abschluss mit Prüfung

6 – bei Abschluss mit Prüfung

 

 

R = Reine Mathematik

A = Angewandte Mathematik