BMS Algebraic Geometry 2008, Problem Set Nr. 4

1. Let \(H_i \) and \(H_j \) be hyperplanes in \(\mathbb{P}^n \) defined by \(x_i = 0 \) and \(x_j = 0 \), with \(i \neq j \). Show that any regular function on \(\mathbb{P}^n - (H_i \cap H_j) \) is constant.

2. Let \(\mathbb{P}^n \) be a hyperplane of \(\mathbb{P}^{n+1} \) and we fix a point \(p \in \mathbb{P}^{n+1} - \mathbb{P}^n \). We define a map \(\phi : \mathbb{P}^{n+1} - \{p\} \to \mathbb{P}^n \) by \(\phi(x) := \) the point of intersection of the line containing \(p \) and \(x \) with the hyperplane \(\mathbb{P}^n \).
 - Show that \(\phi \) is a morphism of prevarieties.
 - Let \(Y \subset \mathbb{P}^3 \) be the twisted cubic curve given by points \([x_0, x_1, x_2, x_3] = [s^3, s^2t, st^2, t^3] \), where \([s, t] \in \mathbb{P}^1 \). Assume that \(p = [0, 0, 1, 0] \in \mathbb{P}^3 \) and let \(\mathbb{P}^2 \) be the hyperplane \(x_2 = 0 \). Find the equations in the plane of the curve \(\phi(Y) \).

3. Let \(X \) be any prevariety and \(p \in X \). Show that there is a 1 : 1 correspondence between the prime ideals of the local ring \(\mathcal{O}_{X,p} \) and the closed subvarieties of \(X \) containing \(p \).

4. We fix \(n, d > 0 \) and let \(M_0, M_1, \ldots, M_N \) be all monomials of degree \(d \) in the variables \(x_0, \ldots, x_d \), where \(N = \binom{n+d}{n} - 1 \). We define the map
 \[
 \rho_d : \mathbb{P}^n \to \mathbb{P}^N
 \]
 obtained by sending a point \(p = [a_0, \ldots, a_n] \) to the point \(\rho_d(p) = [M_0(p), \ldots, M_N(p)] \) obtained by evaluating all the monomials \(M_j \) at the point \((a_0, \ldots, a_n) \). This is called the \(d \)-uple embedding of \(\mathbb{P}^n \) in \(\mathbb{P}^N \).
 - Describe this map in the case \(n = 1, d = 2 \). What is the image of \(\rho_2 \)?
 - Prove that the image \(\rho_d(\mathbb{P}^n) \) is always a projective subvariety of \(\mathbb{P}^N \) given by some homogeneous ideal \(I \subset k[X_0, \ldots, x_n] \).
 - Show that the 3-uple embedding of \(\mathbb{P}^1 \) into \(\mathbb{P}^3 \) has as image the twisted cubic curve in \(\mathbb{P}^3 \).

5. Let \(Y \subset \mathbb{P}^5 \) be the 2-uple embedding \(\rho_2; \mathbb{P}^2 \to \mathbb{P}^5 \). Describe the homogeneous ideal of \(Y \).