Volkswagen Junior Research Group

‘Special Geometries in Mathematical Physics’

* * * * * *

On the history of the exceptional Lie group G_2

Dr. habil. Ilka Agricola

Warsaw University, February 2008
"Moreover, we hereby obtain a direct definition of our 14-dimensional simple group \([G_2]\) which is as elegant as one can wish for."

Friedrich Engel, 1900.

"Zudem ist hiermit eine direkte Definition unserer vierzehngliedrigen einfachen Gruppe gegeben, die an Eleganz nichts zu wünschen übrig lässt."

Friedrich Engel, 1900.

Friedrich Engel in the note to his talk at the Royal Saxonian Academy of Sciences on June 11, 1900.

In this talk:

- History of the discovery and realisation of \(G_2\)
- Role & life of Engel’s Ph. D. student Walter Reichel
- Significance for modern differential geometry
1880-1885: simple complex Lie algebras $\mathfrak{so}(n, \mathbb{C})$ and (n, \mathbb{C}) were well-known; Lie and Engel knew about $\mathfrak{sp}(n, \mathbb{C})$, but nothing was published

In 1884, Wilhelm Killing starts a correspondence with Felix Klein, Sophus Lie and, most importantly, Friedrich Engel

Killing’s ultimate goal: Classification of all real space forms, which requires knowing all simple real Lie algebras

April 1886: Killing conjectures that $\mathfrak{so}(n, \mathbb{C})$ and (n, \mathbb{C}) are the *only* simple complex Lie algebras (though Engel had told him that more simple algebras could occur as isotropy groups)

March 1887: Killing discovers the root system of G_2 and claims that it should have a 5-dimensional realisation

October 1887: Killing obtains the full classification, prepares a paper after strong encouragements by Engel
Wilhelm Killing (1847–1923)

- 1872 thesis in Berlin on ‘Flächenbündel 2. Ordnung’ (advisor: K. Weierstraß)
- 1882–1892 teacher, later principal at the Lyceum Hosianum in Braunsberg (East Prussia)
- 1884 Programmschrift [Studium der Raumformen über ihre infinitesimalen Bewegungen]
- 1892–1919 professor in Münster (rector 18897-98)
Satz (W. Killing, 1887). The only complex simple Lie algebras are \(\mathfrak{so}(n, \mathbb{C}), \mathfrak{sp}(n, \mathbb{C}), \mathfrak{sl}(n, \mathbb{C})\) as well as five exceptional Lie algebras,

\[
\mathfrak{g}_2 := \mathfrak{g}_2^{14}, \mathfrak{f}_4^{52}, \mathfrak{e}_6^{78}, \mathfrak{e}_7^{133}, \mathfrak{e}_8^{248}.
\]

(upper index: dimension, lower index: rank)

Killing’s proof contains some gaps and mistakes. In his thesis (1894), Élie Cartan gave a completely revised and polished presentation of the classification, which has therefore become the standard reference for the result.

Notations:

- \(G_2, \mathfrak{g}_2\): complex Lie group resp. Lie algebra
- \(G_2^c, \mathfrak{g}_2^c\): real *compact* form of \(G_2, \mathfrak{g}_2\)
- \(G_2^*, \mathfrak{g}_2^*\): real *non compact* form of \(G_2, \mathfrak{g}_2\)
Root system of g_2

(only root system in which the angle $\pi/6$ appears between two roots)
Cartan’s thesis

Last section: derives from weight lattice the lowest dimensional irreducible representation of each simple complex Lie algebra

Result. g_2 admits an irreducible representation on \mathbb{C}^7, and it has a g_2-invariant scalar product

$$\beta := x_0^2 + x_1 y_1 + x_2 y_2 + x_3 y_3.$$

Interpreted as a real scalar product, it has signature $(4,3)$: Cartan’s representation restricts to an irred. g_2^* representation inside $so(4,3)$.

Problem: direct construction of g_2 and its real forms g_2^*, g_2^c?
First step: Engel & Cartan, 1893

In 1893, Engel & Cartan publish simultaneously a note in C. R. Acad. Sc. Paris. They give the following construction:

Consider \mathbb{C}^5 and the 2-planes $\pi_a \subset T_a \mathbb{C}^5$ defined by

\[
\begin{align*}
 dx_3 &= x_1 \, dx_2 - x_2 \, dx_1, \\
 dx_4 &= x_2 \, dx_3 - x_3 \, dx_2, \\
 dx_5 &= x_3 \, dx_1 - x_1 \, dx_3.
\end{align*}
\]

The 14 vector fields whose (local) flows map the planes π_a to each other satisfy the commutator relations of \mathfrak{g}_2!

Both give a second, non equivalent realisation of \mathfrak{g}_2:

- Engel: through a contact transformation from the first
- Cartan: as symmetries of solution space of the 2nd order pde's $(f = f(x, y))$

\[
\begin{align*}
 f_{xx} &= \frac{4}{3}(f_{yy})^3, \\
 f_{xy} &= (f_{yy})^2.
\end{align*}
\]
Root system of g_2 (II)

For a modern interpretation of the Cartan/Engel result, we need:

\[\alpha_1, \alpha_2: \text{simple roots}\]

\[\omega_1, \omega_2: \text{fundamental weights (}\omega_1: 7\text{-dim. rep., } \omega_2: \text{adjoint rep.)}\]

\[\mathcal{W}: \text{Weyl chamber } = \text{cone spanned by } \omega_1, \omega_2\]
Parabolic subalgebras of g_2

Every parabolic subalgebra contains all positive roots and (eventually) some negative simple roots:

\[
p_1 = h \oplus g_{-\alpha_1} \oplus g_{\alpha_2} \oplus g_{\beta_2} \oplus g_{\omega_2} \oplus g_{\omega_1} \oplus g_{\beta_1} \oplus g_{\alpha_1} \quad \text{[9-dimensional]}
\]

\[
p_2 = h \oplus g_{\alpha_2} \oplus g_{\beta_2} \oplus g_{\omega_2} \oplus g_{\omega_1} \oplus g_{\beta_1} \oplus g_{\alpha_1} \oplus g_{-\alpha_2} \quad \text{[9-dimensional]}
\]

\[
p_1 \cap p_2 = h \oplus g_{\alpha_2} \oplus g_{\beta_2} \oplus g_{\omega_2} \oplus g_{\omega_1} \oplus g_{\beta_1} \oplus g_{\alpha_1} \quad \text{[8-dim. Borel alg.]}
\]
Modern interpretation

The complex Lie group G_2 has two maximal parabolic subgroups P_1 and P_2 (with Lie algebras p_1 and p_2)

$\Rightarrow G_2$ acts on the two 5-dimensional compact homogeneous spaces

- $M_5^1 := G_2/P_1 = \overline{G \cdot [v_{\omega_1}]} \subset \mathbb{P}(\mathbb{C}^7) = \mathbb{CP}^6$: a quadric
- $M_5^2 := G_2/P_2 = \overline{G \cdot [v_{\omega_2}]} \subset \mathbb{P}(\mathbb{C}^14) = \mathbb{CP}^{13}$ ‘adjoint homogeneous variety’

where $v_{\omega_1}, v_{\omega_2}$ are h. w. vectors of the reps. with highest weight ω_1, ω_2.

Cartan and Engel described the action of g_2 on some open subsets of M_5^i.

Real situation: To $P_i \subset G_2$ corresponds a real subgroup $P^*_i \subset G^*_2$, hence the split form G^*_2 has two real compact 5-dimensional homogeneous spaces on which it acts.

However, G^c_2 has no 9-dim. subgroups! (max. subgroup: 8-dim. $SU(3) \subset G_2$)

Q: Direct realisation of G^c_2?
Élie Cartan (1869–1951)

- 1894 thesis at ENS (Paris), *Sur la structure des groupes de transformations finis et continus*.
- 1894–1912 maître de conférences in Montpellier, Nancy, Lyon, Paris
- 1912-1940 Professor in Paris
Friedrich Engel (1861–1941)

- 1883 thesis in Leipzig on contact transformations
- 1885–1904 Privatdozent in Leipzig
- 1904–1913 Professor in Greifswald, since 1913 in Gießen
- editor of the complete works of S. Lie and H. Grassmann
Non-degenerate 2-forms are at the base of symplectic geometry and define the Lie groups $\text{Sp}(n, \mathbb{C})$.

Q: Is there a geometry based on 3-forms?

- Generic 3-forms (i.e. with dense $\text{GL}(n, \mathbb{C})$ orbit inside $\Lambda^3 \mathbb{C}^n$) exist only for $n \leq 8$.

- To do geometry, we need existence of a compatible inner product, i.e. we want for generic $\omega \in \Lambda^3 \mathbb{C}^n$

$$G_\omega := \{ g \in \text{GL}(n, \mathbb{C}) \mid \omega = g^* \omega \} \subset \text{SO}(n, \mathbb{C}).$$

This implies (dimension count!) $n = 7, 8$.

And indeed: for $n = 7$: $G_\omega = G_2$, for $n = 8$: $G_\omega = \text{SL}(3, \mathbb{C})$.

G_2 and 3-forms in 7 variables
In fact, Engel had had this idea already in 1886. From a letter to Killing (8.4.1886):

“There seem to be relatively few simple groups. Thus first of all, the two types mentioned by you [SO(\(n, \mathbb{C}\)) and SL(\(n, \mathbb{C}\)]. If I am not mistaken, the group of a linear complex in space of \(2n - 1\) dimensions \((n > 1)\) with \((2n + 1)2n/2\) parameters [Sp(\(n, \mathbb{C}\))] is distinct from these. In 3-fold space [\(\mathbb{CP}^3\)] this group [Sp(4, \mathbb{C})] is isomorphic to that [SO(5, \mathbb{C})] of a surface of second degree in 4-fold space. I do not know whether a similar proposition holds in 5-fold space. The projective group of 4-fold space [\(\mathbb{CP}^4\)] that leaves invariant a trilinear expression of the form

\[
\sum_{i,j,k} a_{ijk} \begin{vmatrix} x_i & y_i & z_i \\ x_k & y_k & z_k \\ x_j & y_j & z_j \end{vmatrix} = 0
\]

will probably also be simple. This group has 15 parameters, the corresponding group in 5-fold space has 16, in 6-fold space [\(\mathbb{CP}^6\)] has 14, in 7-fold space [\(\mathbb{CP}^7\)] has 8 parameters. In 8-fold space there is no such group. These numbers are already interesting. Are the corresponding groups simple? Probably this is worth investigating. But also Lie, who long ago thought about similar things, has not yet done so.”
Thm (Engel, 1900). A generic complex 3-form has precisely one $GL(7, \mathbb{C})$ orbit. One such 3-form is

$$\omega_0 := (e_1 e_4 + e_2 e_5 + e_3 e_6)e_7 - 2e_1 e_2 e_3 + 2e_4 e_5 e_6.$$

Every generic complex 3-form $\omega \in \Lambda^3(\mathbb{C}^7)^*$ satisfies:

1) The isotropy group G_ω is isomorphic to the simple group G_2;

2) ω defines a non degenerate symmetric BLF β_ω, which is cubic in the coefficients of ω and the quadric M^5_1 is its isotropic cone in $\mathbb{C}P^6$. In particular, G_ω is contained in some $SO(7, \mathbb{C})$.

3) There exists a G_2-invariant polynomial $\lambda_\omega \neq 0$, which is of degree 7 in the coefficients of ω.

"Zudem ist hiermit eine direkte Definition unserer vierzehngliedrigen einfachen Gruppe gegeben, die an Eleganz nichts zu wünschen übrig lässt."

F. Engel, 1900
In modern notation: Set $V = \mathbb{C}^7$. Then

$$\beta_\omega : V \times V \to \Lambda^7 V^*, \quad \beta_\omega(X, Y) := (X \perp \omega) \wedge (Y \perp \omega) \wedge \omega$$

is a symmetric BLF with values in the 1-dim. space $\Lambda^7(\mathbb{C}^7)^*$ [R. Bryant, 1987]

Hence β_ω defines a map $K_\omega : V \to V^* \otimes \Lambda^7 V^*$, and

$$\det K_\omega \in (\Lambda^7 V)^* \otimes \Lambda^7 (V^* \otimes \Lambda^7 V^*) = \Lambda^9(\Lambda^7 V^*)$$

Assume V is oriented \Rightarrow fix an element $(\det K_\omega)^{1/9} \in \Lambda^7 V^*$ and set

$$g_\omega := \frac{\beta_\omega}{(\det K_\omega)^{1/9}}: \text{this is a true scalar product, and } g_\omega = g_{-\omega}.$$

$$\det g_\omega := \lambda^3_\omega \text{ for an element of ‘order’ 7 in } \omega$$

$$\lambda_\omega \neq 0 \iff \omega \text{ is generic } \iff g_\omega \text{ is nondegenerate}$$
This allows a more concise description of the 2nd homogeneous space G_2/P_2:

Consider

$$G^7_0(2,7) = \{ \pi^2 \subset \mathbb{C}^7 : \beta_\omega \big|_{\pi^2} = 0 \} \subset G^{10}(2,7) \subset \mathbb{P}(\Lambda^2 \mathbb{C}^7) \text{ (Plücker emb.)}$$

Then $G_2/P_2 = \{ \pi^2 \subset G^7_0(2,7) : \pi^2 \downarrow \omega = 0 \}$

On the other hand, we know that

$$G_2/P_2 = G \cdot [v_\omega_2] \subset \mathbb{P}(g^2) \subset \mathbb{P}(\Lambda^2 V) \text{ (because } \Lambda^2 V = g_2 \oplus V)$$

\rightarrow turns out: $G_2/P_2 = G^{10}(2,7) \cap \mathbb{P}(g^2)$ inside $\mathbb{P}(\Lambda^2 V)$

[Landsberg-Manivel, 2002/04]

Facts:

- G_2/P_2 has degree 18
- a smooth complete intersection of G_2/P_2 with 3 hyperplanes is a K3 surface of genus 10. [Borcea, Mukai]
Walter Reichel's thesis (Greifswald, 1907)

- complete system of invariants for complex 3-forms in 6 and 7 variables through Study's symbolic method
- normal forms for 3-forms under $\text{GL}(6, \mathbb{C}), \text{GL}(7, \mathbb{C})$.

$n = 7$: vanishing of λ_ω for non generic 3-forms and rank of β_ω play a decisive role

- Lie-Algebra g_ω for any 3-form ω expressed in terms of its coefficients
Over \mathbb{R}, there are two $\text{GL}(7, \mathbb{R})$ orbits of generic 3-forms!

⇒ Reichel’s formulas allow to compute the isotropy Lie group on both orbits, and indeed:

• one isotropy group is G_2^*, and the scalar product β_ω has signature $(4, 3)$

• the other isotropy group is G_2^c, and the scalar product β_ω is positive definite.

Hence, Walter Reichel’s thesis establishes for the first time a geometric realisation of G_2^c – in fact, the one which explains its importance in modern geometry (and maybe physics).

Let Δ_7 by the 7-dimensional spin representation, of dimension 8.

1) Under G_2^c: $\Delta_7 = V \oplus \mathbb{R}$

2) The isotropy group of a generic spinor is G_2^c

 This implies: ∇ has a ∇-parallel spinor $\iff \text{Hol}(\nabla) \subset G_2^c$
Walter Reichel (1883-1918)

- born 3.11.1883 in Gnadenfrei (Silesia, now Piława Górna/PL) as son of the deacon of the Moravian Church
- primary school at home, 4 years at the ‘Pädagogium’ in Niesky, then 3 years at the Gymnasium in Schweidnitz (now Świdnica/PL)
- 1902–1906: studies mathematics, physics, and philosophy in Greifswald, Leipzig, Halle, and again Greifswald

Moravian Church (Unitas Fratrum): emerged in the 15th ct. from the Bohemian Reformation Movement around Jan Hus (1369-1415), and was renewed in the early 18th Century in Herrnhut, where the management of its European branch and its Archive are still hosted today.
He listened to lectures by

- Friedrich Engel and Theodor Vahlen (in Greifswald)
- Carl Neumann (in Leipzig), who gave its name to the Neumann boundary condition and founded the *Mathematischen Annalen* together with Alfred Clebsch
- Georg Cantor und Felix Bernstein (in Halle), to whom we owe the Cantor-Bernstein-Schröder Theorem in logic
- the theoretical physicist Gustav Mie (in Greifswald), who made important contributions to electromagnetism and general relativity
- the experimental physicist Friedrich Ernst Dorn (in Halle), who discovered the gas Radon in 1900

In addition: philosophy, chemistry, zoology and art history.
July 1907: passed teacher’s examination ‘with distinction’ in pure and applied mathematics, physics and philosophical propaedeutics”.

- teacher in training at the Reformrealgymnasium in Görlitz

- Summer 1908: teacher at Realprogymnasium zu Sprottau (now Szprotawa/PL)

- April 1914: teacher at Oberrealschule i. E. Schweidnitz (now Świdnica/PL)

- marries 1909 his wife Gertrud, born Müller (1889-1956)

- publishes two articles on high school mathematics
November 1914

With the beginning of the First World War, he was drafted (high school files show that teachers were drafted without exceptions).

Walter Reichel died in France on March 30, 1918.

Children: three sons (born 1910, 1913, 1916) and a daughter Irmtraut (born 11.3.1918), married Schiller. Irmtraut Schiller lives in Bremen and has three children.

After the first World War, the Reichel widow moved with her children to Niesky, where she was supported by the Moravian Church. For many years, she accommodated pupils of the ‘Pädagogium’ who did not live in the boarding school’s dormitories.
The Old Pädagogium in Niesky

The Old Pädagogium in Niesky (now public library), built in 1741 as first parish house of the newly founded community in Niesky. Since 1760, it was used as a advanced boarding school.

In the 19th ct., the building became to small, and a New Pädagogium was built nearby. It was completely destroyed during WW II.
The ‘God’s acre’ in Niesky

Left: men, right: women.
The memorial stone on the ‘God’s acre’
Detail of the inscription on the memorial stone

Name und date of death of Walter Reichel are in the 2nd row from below; the stone is damaged and repaired just above his name.
Authors who cite Walter Reichel:

• 1931, Schouten: normal forms of 3-forms on \mathbb{C}^7 without invariant theory
• 1935, Gurevich: normal forms of 3-forms on \mathbb{C}^8

...

• 1978, Elashvili & Vinberg: normal forms of 3-forms on \mathbb{C}^9

G^c_2 and the octonians:

• 1908 and 1914, É. Cartan: observes that $G^c_2 \cong \text{Aut}\mathbb{O}$

• this approach becomes popular by the work of Hans Freudenthal (after 1951)

In fact, the 3-form approach and the the octonian picture are equivalent (a third equivalent description is through ‘vector cross products’)

[see J. Baez, 2002, for a modern account]
Holonomy group of a connection ∇

- γ: closed path through $p \in M$, $P_\gamma : T_p M \to T_p M$ parallel transport
- P_γ isometry \iff ∇ metric
- $C_0(p)$: null-homotopic γ’s
 $\text{Hol}_0(M; \nabla) := \{ P_\gamma \mid \gamma \in C_0(p) \} \subset \text{SO}(n)$

Thm (Berger [& Simons], ≥ 1955). The reduced holonomy $\text{Hol}_0(M; \nabla^g)$ of the LC connection ∇^g is either that of a symmetric space or

$$\text{Sp}(n)\text{Sp}(1) [qK], \text{U}(n) [K], \text{SU}(n) [CY], \text{Sp}(n) [hK], G_2^c, \text{Spin}(7), [\text{Spin}(9)]$$

— will henceforth be called ‘integrable or parallel geometries’.

These are the possible holonomy groups: for some classes ($\text{SU}(n), G_2^c, \text{Spin}(7) \ldots$), no examples were known!
However, Berger missed that

- manifolds with holonomy G^c_2 have a ∇^g-parallel 3-form,
- manifolds with holonomy $\text{Spin}(7)$ have a ∇^g-parallel 4-form,
- and, in consequence, both have to be Ricci-flat.

Weak holonomy (A. Gray, 1971):

Idea: Enlarge the successful holonomy concept to wider classes of manifolds (contact manifolds, almost Hermitian manifolds etc.)

Dfn. ‘nearly parallel G^c_2-manifold’: has structure group G^c_2, but 3-form ω is not parallel, but rather satisfies

$$d\omega = \lambda \ast \omega \text{ for some } \lambda \neq 0.$$

Fernandez-Gray, 1982: Show that there are 4 basic classes of manifolds with G^c_2-structure and construct first examples:

$S^7 = \text{Spin}(7)/G^c_2$, $\text{SU}(3)/S^1$ (Aloff-Wallach spaces), extensions of Heisenberg groups. . .
Progress in the parallel G_2^c case:

- 1987-89, R. Bryant and S. Salamon: local complete metrics with Riemannian holonomy G_2^c

- 1996, D. Joyce: existence of compact Riemannian 7-dimensional manifolds with Riemannian holonomy G_2^c
Today’s general philosophy:

Given a mnfd M^n with G-structure ($G \subset SO(n)$), replace ∇^g by a **metric connection** ∇ with **torsion** that preserves the geometric structure!

\[
\text{torsion: } T(X, Y, Z) := g(\nabla_X Y - \nabla_Y X - [X, Y], Z)
\]

Special case: require $T \in \Lambda^3(M^n)$ (\Leftrightarrow same geodesics as ∇^g)

\[
\Rightarrow g(\nabla_X Y, Z) = g(\nabla_X^g Y, Z) + \frac{1}{2} T(X, Y, Z)
\]

- representation theory yields

 - a clear answer **which** G-structures admit such a connection; if existent, it’s unique and called the ‘characteristic connection’

 - a **classification scheme** for G-structures with characteristic connection: $T_x \in \Lambda^3(T_x M) \overset{G}{\cong} V_1 \oplus \ldots \oplus V_p$

- study Dirac operator \mathcal{D} of the metric connection with torsion $T/3$: ‘characteristic Dirac operator’ (generalizes the Dolbeault operator, Kostant’s cubic Dirac operator)
7-dimensional G_2-manifold

\exists char. connection $\nabla \iff \exists$ VF β s. t. $\delta \omega = -\beta \iota \omega$, torsion:

$$T = -\ast d\omega - \frac{1}{6} (d\omega, \ast \omega) \omega + \ast (\beta \wedge \omega)$$

- $\nabla \omega^3 = 0$, at least on spinor field with $\nabla \psi = 0$ and $\text{Hol}_0(\nabla) \subset G_2 \subset SO(7)$

This last property comes not as a surprise:

Alternative description: $G_2 = \{ A \in \text{Spin}(7) \mid A\psi = \psi \}$.

\Rightarrow explains physicists’ interest in G_2^c:

- M^7 is nearly parallel G_2^c-manifold iff it admits a real Killing spinor [Friedrich-Kath, 1990]

- more recently: superstring theory: torsion \cong field, ∇-parallel spinor \cong supersymmetry transformation.
Many thanks go to: Irmtraut Schiller & family,
Archiv der Universität Greifswald,
Unitätsarchiv der Brüdergemeine in Herrnhut,
Forschungsbibliothek Gotha der Universität Erfurt,
Antiquariat Wilfried Melchior in Spreewaldheide.